
Analyse 1
Série N°1

Propriétés élémentaires du corps des réels

Exercice 1. 1. Somme et produit d’un rationnel et d’un irrationnel
Soient r ∈ Q et x /∈ Q.

i) Supposons par l’absurde que s = r + x ∈ Q. Alors x = s − r. Comme Q est un corps, la différence de
deux rationnels est un rationnel, donc x ∈ Q. Ceci contredit l’hypothèse x /∈ Q. Donc r + x /∈ Q.

ii) Supposons par l’absurde que p = r ·x ∈ Q avec r ̸= 0. Alors x = p
r . Comme r ∈ Q∗, son inverse 1

r ∈ Q.
Le produit de deux rationnels étant un rationnel, on aurait x ∈ Q, ce qui est une contradiction. Donc
r · x /∈ Q.

2. Montrons que
√

2 /∈ Q
Supposons par l’absurde que

√
2 ∈ Q. Il existe alors p, q ∈ N∗ tels que

√
2 = p

q avec pgcd(p, q) = 1
(fraction irréductible). En élevant au carré, on obtient 2 = p2

q2 , soit p2 = 2q2. Ainsi p2 est pair, ce qui
implique que p est pair. On peut écrire p = 2k avec k ∈ N∗. L’équation devient (2k)2 = 2q2, soit
4k2 = 2q2, d’où q2 = 2k2. Ainsi q2 est pair, ce qui implique que q est pair. p et q étant tous deux pairs,
pgcd(p, q) ≥ 2, ce qui contredit l’hypothèse de départ. Donc

√
2 /∈ Q.

3. Densité des irrationnels entre deux rationnels
Soient a, b ∈ Q tels que a < b. On cherche z /∈ Q tel que a < z < b. Considérons le nombre

z = a +
√

2
2 (b − a).

i) Puisque 1 <
√

2 < 2, on a 0 <
√

2
2 < 1. Comme (b − a) > 0, on en déduit que 0 <

√
2

2 (b − a) < b − a,
d’où a < z < b.

ii) Par la question 1, comme (b − a) ∈ Q∗ et
√

2
2 /∈ Q, leur produit est irrationnel. En y ajoutant a ∈ Q,

z reste irrationnel.
4. Somme de racines irrationnelles

Soient x, y ∈ Q+ tels que
√

x,
√

y /∈ Q. Supposons par l’absurde que S =
√

x + √
y ∈ Q. Puisque√

x,
√

y > 0, alors S > 0. On a S2 = x + y + 2√
xy. Comme S, x, y ∈ Q, alors 2√

xy = S2 − x − y ∈ Q,
d’où √

xy ∈ Q. Calculons maintenant :

√
x − √

y =
(
√

x − √
y)(

√
x + √

y)
√

x + √
y

= x − y

S

Puisque x, y, S ∈ Q, alors (
√

x − √
y) ∈ Q. Par addition,

√
x = 1

2
(
(
√

x + √
y) + (

√
x − √

y)
)

serait un
rationnel comme somme de rationnels. Ceci contredit l’hypothèse

√
x /∈ Q. Donc

√
x + √

y /∈ Q.
5. En déduire que

√
2 +

√
3 /∈ Q

On a x = 2 ∈ Q+ et y = 3 ∈ Q+. On a démontré que
√

2 /∈ Q. De la même manière (ou car 3 n’est
pas un carré parfait),

√
3 /∈ Q. D’après le résultat de la question précédente,

√
2 +

√
3 /∈ Q.

Exercice 2. Supposons par l’absurde que ln 3
ln 2 soit un rationnel positif p

q avec p, q ∈ N∗. L’égalité q ln 3 = p ln 2
se transforme, par les propriétés de la fonction logarithme, en

ln(3q) = ln(2p).

En appliquant la fonction exponentielle, on obtient l’égalité

3q = 2p.

Or, cette équation est impossible dans N∗ car une puissance de 3 est toujours impaire, tandis qu’une puissance
de 2 est toujours paire. Cette contradiction permet de conclure que ln 3

ln 2 est un nombre irrationnel.
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Exercice 3. 1. Démontrons les formules pour max(x, y) et min(x, y)
Pour démontrer ces égalités, nous procédons par disjonction de cas selon le signe de x − y :
Si x ≥ y, alors |x − y| = x − y. Dans ce cas :

x + y + |x − y|
2 = x + y + x − y

2 = 2x

2 = x = max(x, y)

x + y − |x − y|
2 = x + y − (x − y)

2 = 2y

2 = y = min(x, y)

Si x < y, alors |x − y| = −(x − y) = y − x. Dans ce cas :

x + y + |x − y|
2 = x + y + y − x

2 = 2y

2 = y = max(x, y)

x + y − |x − y|
2 = x + y − (y − x)

2 = 2x

2 = x = min(x, y)

Dans tous les cas, les formules sont vérifiées.
2. Formule similaire pour max(x, y, z)

Pour trouver le maximum de trois nombres, on utilise la propriété d’associativité : max(x, y, z) =
max(max(x, y), z).

En posant Mxy = max(x, y) = x+y+|x−y|
2 , la formule devient :

max(x, y, z) = Mxy + z + |Mxy − z|
2

En remplaçant Mxy par son expression, on obtient la formule complète :

max(x, y, z) =
x+y+|x−y|

2 + z +
∣∣∣x+y+|x−y|

2 − z
∣∣∣

2

Ce qui peut se simplifier légèrement en :

max(x, y, z) = x + y + |x − y| + 2z + |x + y + |x − y| − 2z|
4

Exercice 4. 1. L’ensemble A = [0, 1] ∩ Q
L’ensemble des majorants est [1, +∞[ et l’ensemble des minorants est ] − ∞, 0].Alors

sup A = 1

et, comme 1 appartient à A (car 1 est un rationnel), le plus grand élément est

max A = 1.

La borne inférieure A est
inf A = 0

et, comme 0 appartient à A, le plus petit élément est

min A = 0.

2. L’ensemble B =]0, 1[∩Q
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L’ensemble des majorants est [1, +∞[ et l’ensemble des minorants est ] − ∞, 0]. Alors la borne supérieure
de B est

sup B = 1,

mais comme 1 n’appartient pas à l’intervalle ouvert ]0, 1[, il n’existe pas de plus grand élément. De même, la
borne inférieure de B est

inf B = 0,

mais comme 0 n’appartient pas à l’ensemble, il n’existe pas de plus petit élément.
3. L’ensemble C =

{
(−1)n + 1

n2 | n ∈ N∗
}

Considérons les termes de la suite un = (−1)n + 1
n2 .

i) Pour n pair (n = 2k), les termes sont de la forme 1+ 1
n2 : ils sont strictement supérieurs à 1 et décroissent

vers 1. La valeur maximale est atteinte pour n = 2, soit u2 = 1 + 1
4 = 5

4 .
ii) Pour n impair (n = 2k + 1), les termes sont de la forme −1 + 1

n2 : ils sont strictement supérieurs à −1
et décroissent vers −1. Le premier terme impair est u1 = −1 + 1 = 0.

L’ensemble des majorants est [5
4 , +∞[, donc la borne supérieure de C est

sup C = 5
4 .

Comme cette valeur est atteinte pour n = 2, le plus grand élément est

max C = 5
4 .

L’ensemble des minorants est ] − ∞, −1], donc la borne inférieure de C est

inf C = −1.

Cependant, comme un est toujours strictement supérieur à −1 (car 1
n2 > 0), la valeur −1 n’est jamais atteinte

et il n’existe pas de plus petit élément.

Exercice 5. Soit b0 ∈ B. Par hypothèse, ∀a ∈ A, a ≤ b0. Donc A est majorée par b0. Comme A ̸= ∅, sup A
existe.
Soit a0 ∈ A. Par hypothèse, ∀b ∈ B, a0 ≤ b. Donc B est minorée par a0. Comme B ̸= ∅, inf B existe.
Pour tout b ∈ B, b est un majorant de A par hypothèse, donc sup A ≤ b.
Ainsi, sup A est un minorant de B, ce qui implique que sup A ≤ inf B par définition de la borne inférieure.

Exercice 6. 1. E est non vide car f(0) ∈ [0, 1], donc f(0) ≥ 0, d’où 0 ∈ E. E est inclus dans [0, 1], donc
E est majoré par 1. Toute partie de R non vide et majorée admet une borne supérieure, donc b = sup E
existe et b ∈ [0, 1].

2. — Pour tout x ∈ E, x ≤ b. Comme f est croissante, x ≤ f(x) ≤ f(b). Ainsi f(b) est un majorant de E,
donc b ≤ f(b).

— En appliquant f (croissante) à b ≤ f(b), on obtient f(b) ≤ f(f(b)), ce qui signifie que f(b) ∈ E.
Comme b est le majorant de E, on a f(b) ≤ b.
Par double inégalité, on conclut que f(b) = b.

Exercice 7. 1. A est bornée, donc il existe m, M ∈ R tels que ∀z ∈ A, m ≤ z ≤ M . Pour tout (x, y) ∈ A2,
on a x ≤ M et −y ≤ −m, donc x − y ≤ M − m. De même y − x ≤ M − m. Ainsi |x − y| ≤ M − m. B
est donc majorée par M − m.
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2. On a déjà sup B ≤ sup A − inf A. Soit ϵ > 0. Par définition des bornes, il existe x, y ∈ A tels que
x > sup A − ϵ

2 et y < inf A + ϵ
2 . Alors x − y > sup A − inf A − ϵ. Comme |x − y| ≥ x − y, on a

|x − y| > (sup A − inf A) − ϵ. Ceci étant vrai pour tout ϵ > 0, on en déduit sup B = sup A − inf A.

Exercice 8. 1. (a) Soit c = a+b
2 . Comme a < b, on a 2a < a + b < 2b, d’où a < c < b. c est bien un réel.

(b) Oui. Q est dense dans R. Par la propriété archimédienne, il existe n ∈ N∗ tel que n(b − a) > 1.
L’intervalle ]na, nb[ contient alors au moins un entier m, d’où a < m

n < b.
(c) Oui. En appliquant la densité de Q à a −

√
2 et b −

√
2, il existe q ∈ Q tel que a −

√
2 < q < b −

√
2.

Le nombre I = q +
√

2 est irrationnel et a < I < b.
2. Si l’ensemble des rationnels dans ]a, b[ était fini, soit q∗(Le max d’un ensemble fini et toujours existe) le

plus grand d’entre eux. L’intervalle ]q∗, b[ contiendrait encore un rationnel par densité, contredisant la
maximalité de q∗. Il en va de même pour les irrationnels.

Exercice 9. Soit A = {r3 | r ∈ Q}. Pour montrer que A est dense dans R, nous devons prouver que pour tout
couple (a, b) ∈ R2 tel que a < b, il existe y ∈ A tel que a < y < b.

Soit
f(x) = 3√x

une fonction strictement croissante sur R. Puisque a < b, nous avons :

3√a <
3√

b

On sait que l’ensemble des rationnels Q est dense dans R. Par conséquent, entre les deux réels 3
√

a et 3√b, il
existe nécessairement un nombre rationnel r.

∃r ∈ Q tel que 3√a < r <
3√

b

La fonction g(x) = x3 est également strictement croissante sur R. En appliquant cette fonction à l’inégalité
précédente, l’ordre est conservé :

( 3√a)3 < r3 < ( 3√
b)3

Ce qui se simplifie en :
a < r3 < b

Ainsi nous avons trouvé un élément y = r3 appartenant à A tel que y ∈]a, b[. L’ensemble {r3 | r ∈ Q} est
donc dense dans R.
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