
Correction de l’examen d’Analyse 1

Durée 1h30

Exercice 1. 1. Soit x = 0, 336433643364 . . . . On remarque que la période est 3364, elle comporte 4 chiffres.
On multiplie x par 104 = 10000 :

10000x = 3364, 33643364 · · · = 3364 + x

D’où : 9999x = 3364, ce qui donne :
x = 3364

9999
Ici a = 3364 ∈ Z et b = 9999 ∈ N∗.

2. (a) Soit x > 0. Appliquons le Théorème des Accroissements Finis (TAF) à la fonction f(t) = ln(t)
sur l’intervalle [x, x + 1].
— f est continue sur [x, x + 1].
— f est dérivable sur ]x, x + 1[ et f ′(t) = 1

t .
D’après le TAF, il existe c ∈]x, x + 1[ tel que :

f(x + 1) − f(x) = f ′(c)((x + 1) − x) =⇒ ln(x + 1) − ln(x) = 1
c

Or, ln(x + 1) − ln(x) = ln
(

x+1
x

)
= ln

(
1 + 1

x

)
. Comme x < c < x + 1, on a en passant à l’inverse :

1
x + 1 <

1
c

<
1
x

En remplaçant 1
c , on obtient bien :

1
x + 1 < ln

(
1 + 1

x

)
<

1
x

(b) Pour n ∈ N∗, on a un = (1 + 1
n)n. Prenons le logarithme :

ln(un) = n ln
(

1 + 1
n

)
En utilisant l’encadrement précédent avec x = n :

1
n + 1 < ln

(
1 + 1

n

)
<

1
n

Multiplions par n > 0 :
n

n + 1 < n ln
(

1 + 1
n

)
<

n

n
= 1

On sait que lim
n→+∞

n
n+1 = 1. Par le théorème des gendarmes :

lim
n→+∞

ln(un) = 1

Par continuité de la fonction exponentielle, on en déduit :

lim
n→+∞

un = e1 = e

3. Soient a, b > 0.
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(a) A = {a + bn | n ∈ N}.
— Minoration : Pour tout n ∈ N, bn ≥ 0, donc a + bn ≥ a. inf A = min A = a.
— Majoration : bn → +∞ quand n → +∞. A n’est pas majorée. sup A = +∞.

(b) B = {(−1)na + b
n | n ∈ N∗}.

— Si n est pair (n = 2k) : a + b
2k . Les valeurs décroissent vers a.

— Si n est impair (n = 2k + 1) : −a + b
2k+1 . Les valeurs décroissent vers −a.

— Bornes : sup B = max B = a + b
2 (pour n = 2). inf B = −a (limite quand n → +∞ et n impair).

(c) C = {a + (−1)nb
n | n ∈ N∗}.

— Si n est pair : a + b
n > a. Le maximum est pour n = 2 : a + b

2 .
— Si n est impair : a − b

n < a. Le minimum est pour n = 1 : a − b.
— Bornes : sup C = max C = a + b

2 et inf C = min C = a − b.

Exercice 2. Théorème du point fixe de Banach

1. (a) Montrons par récurrence que ∀n ∈ N, |un+1 − un| ≤ λn|u1 − u0|.
— Initialisation : Pour n = 0, |u1 − u0| ≤ λ0|u1 − u0| = |u1 − u0|, ce qui est vrai.
— Hérédité : Supposons la propriété vraie au rang n. Au rang n + 1 :

|un+2 − un+1| = |f(un+1) − f(un)|

Comme f est contractante de rapport λ :

|un+2 − un+1| ≤ λ|un+1 − un|

En utilisant l’hypothèse de récurrence :

|un+2 − un+1| ≤ λ(λn|u1 − u0|) = λn+1|u1 − u0|

La propriété est donc vraie pour tout n ∈ N.
(b) Soient n, m ∈ N. Par l’inégalité triangulaire :

|un+m − un| ≤ |un+m − un+m−1| + |un+m−1 − un+m−2| + · · · + |un+1 − un|

En utilisant le résultat de la question précédente :

|un+m − un| ≤ (λn+m−1 + λn+m−2 + · · · + λn)|u1 − u0|

|un+m − un| ≤ λn(1 + λ + · · · + λm−1)|u1 − u0|

Comme 0 < λ < 1, la somme géométrique est majorée par sa limite infinie :
m−1∑
k=0

λk ≤
∞∑

k=0
λk = 1

1−λ .

On obtient donc :
|un+m − un| ≤ λn

1 − λ
|u1 − u0|

(c) L’inégalité précédente montre que |un+m −un| −−−−−→
n→+∞

0 car λn → 0. La suite (un) est donc une suite
de Cauchy. Comme R est complet et que [a, b] est un fermé, la suite (un) converge vers une limite
ℓ ∈ [a, b].

2. Par l’inégalité triangulaire, en insérant un+1 :

|f(ℓ) − ℓ| ≤ |f(ℓ) − un+1| + |un+1 − ℓ|

Comme un+1 = f(un), on a :

|f(ℓ) − ℓ| ≤ |f(ℓ) − f(un)| + |un+1 − ℓ|

Existence : Puisque un → ℓ et que f est continue (toute fonction contractante est lipschitzienne, donc
continue), alors f(un) → f(ℓ). En faisant tendre n vers +∞ dans l’inégalité :
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— |f(ℓ) − f(un)| → 0
— |un+1 − ℓ| → 0
On en déduit que |f(ℓ) − ℓ| = 0, soit f(ℓ) = ℓ. ℓ est un point fixe.

3. Unicité : Supposons qu’il existe deux points fixes x∗ et y∗. Alors f(x∗) = x∗ et f(y∗) = y∗. D’après le
caractère contractant de f :

|x∗ − y∗| = |f(x∗) − f(y∗)| ≤ λ|x∗ − y∗|

D’où : (1 − λ)|x∗ − y∗| ≤ 0. Comme 1 − λ > 0, cela impose |x∗ − y∗| = 0, donc x∗ = y∗. Le point fixe est
donc unique.

Exercice 3. Soit f : R → R une fonction continue.

Implication (ii) =⇒ (i) : Supposons qu’il existe c ∈ R tel que f(x) = cx pour tout x ∈ R. Alors pour tout
(x, y) ∈ R2 :

f(x + y) = c(x + y) = cx + cy = f(x) + f(y)

L’assertion (i) est donc vérifiée.

Implication (i) =⇒ (ii) : Supposons que pour tout (x, y) ∈ R2, f(x + y) = f(x) + f(y).

(a) En prenant x = y = 0 dans (i), on a f(0 + 0) = f(0) + f(0), soit f(0) = 2f(0). On en déduit que
f(0) = 0.

(b) Pour tout x ∈ R, en prenant y = −x dans (i), on a :

f(x + (−x)) = f(x) + f(−x) =⇒ f(0) = f(x) + f(−x)

Comme f(0) = 0, on obtient 0 = f(x) + f(−x), d’où f(−x) = −f(x). (La fonction est impaire).
(c) Montrons par récurrence sur n que f(nx) = nf(x).

— Initialisation : Pour n = 0, f(0 · x) = f(0) = 0 = 0 · f(x). Vrai.
— Hérédité : Supposons f(nx) = nf(x). Alors :

f((n + 1)x) = f(nx + x) = f(nx) + f(x) = nf(x) + f(x) = (n + 1)f(x)

D’après b), ceci s’étend à Z : si n < 0, posons m = −n ∈ N, alors f(nx) = f(−mx) = −f(mx) =
−mf(x) = nf(x).

(d) Pour tout n ∈ N, d’après c) avec x = 1, on a f(n) = f(n · 1) = nf(1). En posant c = f(1), on a
f(n) = cn.

(e) Soit n ∈ Z \ {0}. On a f(1) = f(n · 1
n). D’après c), f(n · 1

n) = nf( 1
n). On a donc c = nf( 1

n), d’où
f( 1

n) = c
n .

(f) Soit q ∈ Q, alors q = p
q′ avec p ∈ Z et q′ ∈ N∗.

f(q) = f

(
p · 1

q′

)
= pf

( 1
q′

)
= p

(
c

q′

)
= c · p

q′ = cq

Ainsi, f(q) = cq pour tout rationnel q.
(g) Soit x ∈ R. Comme Q est dense dans R, il existe une suite de rationnels (qn) qui converge vers x.

D’après f), pour tout n, f(qn) = cqn. Puisque f est continue sur R :

f(x) = f( lim
n→+∞

qn) = lim
n→+∞

f(qn) = lim
n→+∞

cqn = c( lim
n→+∞

qn) = cx

On conclut que f(x) = cx pour tout x ∈ R.
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Exercice 4. Soit f une fonction trois fois dérivable sur I et g définie par :

g(x) = f(x) − f(a) − x − a

2 (f ′(a) + f ′(x)) + K(x − a)3

1. Dérivabilité et calcul de g′ : Comme f est trois fois dérivable sur I, f et f ′ sont au moins deux fois
dérivables sur I. Par somme et produit de fonctions dérivables, g est au moins deux fois dérivable sur I.
Calculons la dérivée première g′(x) en utilisant la règle du produit pour le terme central :

g′(x) = f ′(x) − 0 −
[1

2(f ′(a) + f ′(x)) + x − a

2 (0 + f ′′(x))
]

+ 3K(x − a)2

g′(x) = f ′(x) − 1
2f ′(a) − 1

2f ′(x) − x − a

2 f ′′(x) + 3K(x − a)2

En simplifiant les termes en f ′(x), on obtient :

g′(x) = f ′(x) − f ′(a)
2 − x − a

2 f ′′(x) + 3K(x − a)2

2. Existence de c ∈]a, b[ tel que g′(c) = 0 : Vérifions les conditions du théorème de Rolle pour g sur
[a, b] :
— g est continue sur [a, b] (car dérivable).
— g est dérivable sur ]a, b[.
— g(a) = f(a) − f(a) − 0 + 0 = 0.
— g(b) = 0 par définition de la constante K.
D’après le théorème de Rolle, il existe c ∈]a, b[ tel que g′(c) = 0.

3. Existence de θ ∈]a, b[ et expression finale : Calculons g′′(x) à partir de l’expression de g′(x) trouvée
en (1) :

g′′(x) = 1
2f ′′(x) −

[1
2f ′′(x) + x − a

2 f ′′′(x)
]

+ 6K(x − a)

g′′(x) = −x − a

2 f ′′′(x) + 6K(x − a) = (x − a)
(

6K − 1
2f ′′′(x)

)
Appliquons maintenant le théorème de Rolle à g′ sur [a, c] :

— g′(a) = f ′(a)−f ′(a)
2 − 0 + 0 = 0.

— g′(c) = 0 (d’après la question 2).
— g′ est dérivable sur [a, c] car f est trois fois dérivable.
Il existe donc θ ∈]a, c[⊂]a, b[ tel que g′′(θ) = 0.

g′′(θ) = (θ − a)
(

6K − 1
2f ′′′(θ)

)
= 0

Comme θ ̸= a, on a 6K = 1
2f ′′′(θ), soit K = f ′′′(θ)

12 .
Enfin, utilisons la condition g(b) = 0 :

0 = f(b) − f(a) − b − a

2 (f ′(a) + f ′(b)) + f ′′′(θ)
12 (b − a)3

En isolant f(b) − f(a), on obtient la formule demandée :

f(b) − f(a) = b − a

2 (f ′(a) + f ′(b)) − (b − a)3

12 f ′′′(θ)

mohamednajiblaatabi.com Examen d’Analyse 1

https://mohamednajiblaatabi.com/bibliotheque-de-cours-et-ressources-pedagogiques/

