Analyse 1
Série N°4

Fonction dérivable et application

Exercice 1. 1. Le polynoéme P est une fonction continue et dérivable sur R. Pour chaque i € {1,...,n—1},
considérons l'intervalle [, iy1]. On a P(a;) = P(a;4+1) = 0. D’apres le Théoréme de Rolle, il existe
au moins un réel ¢; €]a;, a;11[ tel que P'(¢;) = 0.
Comme les intervalles |ay;, a;41] sont deux a deux disjoints, nous avons trouvé au moins n — 1 racines
réelles distinctes pour P’. Or, P est de degré n, donc P’ est de degré n — 1. Un polynéme de degré n — 1
possede au plus n — 1 racines (réelles ou complexes).
Ainsi P’ posséde exactement n — 1 racines, et elles sont toutes réelles et distinctes.

2. Racines de S = P + P’ : Considérons la fonction auxiliaire f(z) = P(x)e”.
f est dérivable sur R et sa dérivée est :

['(@) = P(@)e” + P(a)e* = (P(x) + P'(2))e" = S(a)e"

Comme P(«;) = 0 pour tout i € {1,...,n}, on a également f(c;) = 0. En appliquant le Théoréme de
Rolle a f sur chaque intervalle [, ;1] (n — 1 intervalles), il existe d; €]ay, ;1] tel que f'(d;) = 0.
Comme e # 0, cela implique S(d;) = 0. On trouve ainsi au moins n — 1 racines réelles distinctes
pour S.

3. Réalité de la n-iéme racine : Le polynome S = P + P’ est a coefficients réels et de degré n. Nous
avons déja établi 'existence de n — 1 racines réelles distinctes dq,...,d,_1.

Soit dy la derniere racine manquante dans C. Supposons par I'absurde que dy soit complexe non réelle

(dy € C\ R). Comme S € R[X], si dy est une racine, alors son conjugué dy est également une racine
de S. Puisque dy n’est pas réelle, on a dy # dg. Cela signifierait que S posséde au moins deux racines
supplémentaires, ce qui porterait le nombre total de racines a :

n—1)+2=n+1

Ceci est absurde car un polynéme de degré n ne peut pas avoir plus de n racines. Par conséquent, la
racine dy est nécessairement réelle.

Exercice 2. 1. Considérons la fonction h(x) = tan(x) + 7§ sur l'intervalle I = [%, 77}.
(a) La fonction tan est continue sur tout intervalle ot elle est définie. Comme 5 ¢ I, h est continue sur
I.

(b) h(%)ztan(%)+§:—l+§ —0,21 <0 (car m < 4).
0

h(r) =tan(m) + 5 =04+ =% >

(c) Puisque h est continue et que h(2F)

tel que h(xg) = 0.

(d) La dérivée de h est h/(x) = 1+tan?(x). Pour tout = € I, h'(x) > 0. La fonction h est donc strictement
croissante sur I, ce qui garantit l'unicité de la solution.

2. Soit f(z) = e*sin(x) — 1 sur [0, 7|
(a) f est continue sur [0, 7].
(b) f est dérivable sur |0, .
(c) f(0)=e"sin(0) —1 = —1et f(7r) =€ sin(n) — 1= —1.
Comme f(0) = f(m), d’apres le théoréme de Rolle, il existe au moins un réel ¢ €]0, 7] tel que

f'(e) =0.

0
h(m) < 0, d’aprés le TVI, il existe au moins un réel zy €]3F, 7|
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f'(z) = e” sin(z) + €” cos(z) = e”(sin(x) + cos(z)).

L’équation f'(c) = 0 devient e“(sin(c) + cos(c)) = 0. Puisque e > 0 pour tout ¢, on a nécessairement
sin(c) 4 cos(c) = 0. L’équation sin(z) 4 cos(z) = 0 admet donc bien au moins une solution dans |0, 7[.

Exercice 3. Soit P(X) = X" +pX +¢, et n > 3.

1. Supposons que P possede k racines réelles distinctes. Par applications successives du théoreme de Rolle :
P’ posséde au moins k — 1 racines réelles.
P posséde au moins k — 2 racines réelles.
Or, P"(X) = n(n — 1)X" 2. Cette dérivée seconde ne s’annule qu’en = 0 (au plus une valeur). On a
donc k — 2 < 1, ce qui implique k£ < 3. Le polynéme P admet donc au plus 3 racines réelles.

2. Cas ot n est pair : Si n est pair, alors n — 1 est impair. La fonction P'(z) = naz""! + p est alors
strictement croissante sur R (car sa dérivée P”(x) est positive et ne s’annule qu’en 0). Etant strictement
monotone, P’ s’annule au plus une fois sur R. D’aprés le théoréme de Rolle, si P avait 3 racines, P’ en
aurait au moins 2. Par conséquent, P admet au plus 2 racines réelles.

Exercice 4. Soit P € R[X] un polynéme de degré n. On considere la fonction f définie sur R par f(x) =
e’ — P(x).
La dérivée d’ordre n+ 1 de f est f(**1)(z) = €, car la dérivée d’ordre n + 1 d’un polynéme de degré n
est nulle.
Puisque f("*t1)(z) = ¢ > 0 pour tout = € R, f"*1 ne s’annule jamais.

D’apres le théoreme de Rolle, si une fonction possede k racines, sa dérivée en possede au moins k — 1.
Par conséquent, f () possede au plus 1 racine, f (n=1) au plus 2 racines, et par itération, f posséde au
plus n + 1 racines.

L’équation P(z) = € admet donc un nombre fini de solutions réelles.

Exercice 5. Théoreme des Accroissements Finis
Soit f : R — R la fonction définie par f(t) = arctan(t).
f est continue et dérivable sur R.
Sa dérivée est donnée par f'(t) = 7 jtg.
Pour tout t € R, on a 1+ t? > 1, donc |f/(t)| = H% <1.
D’apres le Théoréme des Accroissements Finis (TAF), pour tous réels x et y, il existe ¢ compris entre

z et y tel que :

f@) = fly) = f' ()= —y)

En passant a la valeur absolue :
|arctan(z) — arctan(y)| = | £/(c)| - [z — y|

Comme |f’(¢)| <1, on en déduit :
|arctan(z) — arctan(y)| < |z — y|

Considérons la fonction g(t) = e! sur I'intervalle [0, z] avec x > 0. g est continue sur [0, z] et dérivable sur

10, z[. D’apres le TAF, il existe ¢ €]0, [ tel que :
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Comme ¢ > 0 et que la fonction exponentielle est strictement croissante, on a e¢ > e = 1. Ainsi,
Lx—lZl,d’oﬁe‘%—lz:}:.
Comme ¢ < z, on a e < e*. Ainsi, Lﬂ;l <e* dou e —1 < xe.

Le cas z = 0 est trivial (0 < 0 < 0). On conclut que pour tout z > 0 :

r<e®—1<ze”

Soit h(t) = sin(t). h est dérivable sur R et h/(t) = cos(t). Puisque pour tout ¢t € R, |cos(t)| < 1, nous
appliquons I'Inégalité des Accroissements Finis (IAF) : Si une fonction f est dérivable sur un intervalle I
et que |f'| < M, alors pour tous z,y € I :

|f(z) = f(y)| < M|z —y|
Ici, avec M = 1, nous obtenons immédiatement :

|sin(z) —sin(y)| < |z —y|

Exercice 6. 1. Etude sur [k,k + 1] : Soit f(t) = In(t). f est continue sur [k,k + 1] et dérivable sur
|k, k + 1[. D’apres le TAF, 3c €]k, k + 1] tel que :

Ik +1) — In(k) = f/(c)(k+1— k) = -

C

1 1 1 'ATy -
Or,k<c<k+1l = 7 <;<gz Dou:

1 1
—— <In(k+1)—In(k) < —.
Fri skt -ty <g
2. Encadrement de In(1 + z) : Appliquons le TAF a f(t) = In(¢) sur [1,1 4 z] pour > 0. 3d €]1,1 + z]
tel que :
In(1+z) —1In(1) , 1 In(1+z) 1
e d = — _— = —
Gxo-1 JW=3= —3 d

Comme 1 < d < 1+ x, alors IJ%QC < % < 1. En multipliant par z > 0 :

T
1+ 2

<In(l+z) <.

Exercice 7. Soit f : [0,400[— R définie par f(x) = In(1+4z) et la suite (u,,) définie par ug = 1 et up+1 = f(uy).

1.a) Soit g(x) = f(z) —x = In(1 +z) — x. La fonction g est dérivable sur [0, +o00[ comme somme de fonctions
usuelles dérivables. Sa dérivée est :

Ja)= ———1=120xa) -2

:1+x_ - 1+ :1—1—33

Pour tout z €]0,4+o00[, ona —z < 0 et 1+ 2 > 0, donc ¢'(z) < 0.

La fonction g est donc strictement décroissante sur [0, +oo[. Comme ¢g(0) = In(1) —0 = 0, et que g est
strictement décroissante, I’équation g(z) = 0 admet 0 comme unique solution. Par conséquent, 1’unique
point fixe de f sur [0, +oo[ est z = 0.

1.b) Puisque ¢g(0) = 0 et que g est strictement décroissante sur [0, 4+o0[, alors pour tout > 0, g(z) < ¢(0),
soit g(x) < 0.

Pour tout n € N, upy1 — up = f(un) — up = g(uy). Si uy > 0, alors g(uy,) < 0, donc upy1 < up. La

suite est donc décroissante.

Montrons par récurrence que u, > 0.
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Initialisation : ug =1 > 0.
Hérédité : Supposons u, > 0. Alors 1+ u,, > 1, donc uy41 = In(1 + u,) > In(1) = 0.
Ainsi, par récurrence, Vn € N, u,, > 0.

2) On a f'(z) = 14%:5 Sur [0, 1], la fonction = +— 1 + x est croissante et varie de 1 a 2. Par décroissance de

la fonction inverse sur R%, on a 2 < f/(z) < 1. Il en résulte que Va € [0,1],0 < f'(z) < 1.
3) Soit n € N. Comme u,, > 0, on considere U'intervalle [0,u,]. f est continue sur [0, u,] et dérivable sur
10, up[. D’apres le Théoréme des Accroissements Finis (TAF), il existe ¢, €]0,u,| tel que :

flun) — f(0) = f/(cn)(un —0) = upy1 —0= f,(cn)un

En utilisant I'admission de 'énoncé |f’(c,)| < 2, et comme u, > 0, on obtient :

3
[Unt1| = |f/(cn)| Nun| < 1|un‘

4) Récurrence :
Pour n=0:up=1et (%)0 = 1. L’inégalité 0 <1 <1 est vraie.

Hérédité : Supposons 0 3

Up < (%)” D’apres la question précédente, u,41 < ju,. En injectant

<
; 5 3 (3\" _ (3\"
I'hypothese : w41 < 3 (Z) = 1) .
n
On a I'encadrement vn € N,0 < u,, < (%) . Comme la suite géométrique ((2)") converge vers 0 (car
|%\ < 1), d’apres le théoréme des gendarmes, on conclut :

lim u, =0
n—4o0o
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