
Analyse 1
Série N°4

Fonction dérivable et application

Exercice 1. 1. Le polynôme P est une fonction continue et dérivable sur R. Pour chaque i ∈ {1, . . . , n−1},
considérons l’intervalle [αi, αi+1]. On a P (αi) = P (αi+1) = 0. D’après le Théorème de Rolle, il existe
au moins un réel ci ∈]αi, αi+1[ tel que P ′(ci) = 0.

Comme les intervalles ]αi, αi+1[ sont deux à deux disjoints, nous avons trouvé au moins n − 1 racines
réelles distinctes pour P ′. Or, P est de degré n, donc P ′ est de degré n − 1. Un polynôme de degré n − 1
possède au plus n − 1 racines (réelles ou complexes).
Ainsi P ′ possède exactement n − 1 racines, et elles sont toutes réelles et distinctes.

2. Racines de S = P + P ′ : Considérons la fonction auxiliaire f(x) = P (x)ex.
f est dérivable sur R et sa dérivée est :

f ′(x) = P ′(x)ex + P (x)ex = (P (x) + P ′(x))ex = S(x)ex

Comme P (αi) = 0 pour tout i ∈ {1, . . . , n}, on a également f(αi) = 0. En appliquant le Théorème de
Rolle à f sur chaque intervalle [αi, αi+1] (n − 1 intervalles), il existe di ∈]αi, αi+1[ tel que f ′(di) = 0.
Comme edi ̸= 0, cela implique S(di) = 0. On trouve ainsi au moins n − 1 racines réelles distinctes
pour S.

3. Réalité de la n-ième racine : Le polynôme S = P + P ′ est à coefficients réels et de degré n. Nous
avons déjà établi l’existence de n − 1 racines réelles distinctes d1, . . . , dn−1.

Soit d0 la dernière racine manquante dans C. Supposons par l’absurde que d0 soit complexe non réelle
(d0 ∈ C \ R). Comme S ∈ R[X], si d0 est une racine, alors son conjugué d0 est également une racine
de S. Puisque d0 n’est pas réelle, on a d0 ̸= d0. Cela signifierait que S possède au moins deux racines
supplémentaires, ce qui porterait le nombre total de racines à :

(n − 1) + 2 = n + 1

Ceci est absurde car un polynôme de degré n ne peut pas avoir plus de n racines. Par conséquent, la
racine d0 est nécessairement réelle.

Exercice 2. 1. Considérons la fonction h(x) = tan(x) + π
4 sur l’intervalle I =

[
3π
4 , π

]
.

(a) La fonction tan est continue sur tout intervalle où elle est définie. Comme π
2 /∈ I, h est continue sur

I.
(b) h

(
3π
4

)
= tan

(
3π
4

)
+ π

4 = −1 + π
4 ≈ −0, 21 < 0 (car π < 4).

h(π) = tan(π) + π
4 = 0 + π

4 = π
4 > 0.

(c) Puisque h est continue et que h(3π
4 ) · h(π) < 0, d’après le TVI, il existe au moins un réel x0 ∈]3π

4 , π[
tel que h(x0) = 0.

(d) La dérivée de h est h′(x) = 1+tan2(x). Pour tout x ∈ I, h′(x) > 0. La fonction h est donc strictement
croissante sur I, ce qui garantit l’unicité de la solution.

2. Soit f(x) = ex sin(x) − 1 sur [0, π].
(a) f est continue sur [0, π].
(b) f est dérivable sur ]0, π[.
(c) f(0) = e0 sin(0) − 1 = −1 et f(π) = eπ sin(π) − 1 = −1.

Comme f(0) = f(π), d’après le théorème de Rolle, il existe au moins un réel c ∈]0, π[ tel que
f ′(c) = 0.
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f ′(x) = ex sin(x) + ex cos(x) = ex(sin(x) + cos(x)).

L’équation f ′(c) = 0 devient ec(sin(c) + cos(c)) = 0. Puisque ec > 0 pour tout c, on a nécessairement
sin(c)+cos(c) = 0. L’équation sin(x)+cos(x) = 0 admet donc bien au moins une solution dans ]0, π[.

Exercice 3. Soit P (X) = Xn + pX + q, et n ⩾ 3.

1. Supposons que P possède k racines réelles distinctes. Par applications successives du théorème de Rolle :
P ′ possède au moins k − 1 racines réelles.
P ′′ possède au moins k − 2 racines réelles.

Or, P ′′(X) = n(n − 1)Xn−2. Cette dérivée seconde ne s’annule qu’en x = 0 (au plus une valeur). On a
donc k − 2 ≤ 1, ce qui implique k ≤ 3. Le polynôme P admet donc au plus 3 racines réelles.

2. Cas où n est pair : Si n est pair, alors n − 1 est impair. La fonction P ′(x) = nxn−1 + p est alors
strictement croissante sur R (car sa dérivée P ′′(x) est positive et ne s’annule qu’en 0). Étant strictement
monotone, P ′ s’annule au plus une fois sur R. D’après le théorème de Rolle, si P avait 3 racines, P ′ en
aurait au moins 2. Par conséquent, P admet au plus 2 racines réelles.

Exercice 4. Soit P ∈ R[X] un polynôme de degré n. On considère la fonction f définie sur R par f(x) =
ex − P (x).

La dérivée d’ordre n + 1 de f est f (n+1)(x) = ex, car la dérivée d’ordre n + 1 d’un polynôme de degré n
est nulle.
Puisque f (n+1)(x) = ex > 0 pour tout x ∈ R, f (n+1) ne s’annule jamais.
D’après le théorème de Rolle, si une fonction possède k racines, sa dérivée en possède au moins k − 1.
Par conséquent, f (n) possède au plus 1 racine, f (n−1) au plus 2 racines, et par itération, f possède au
plus n + 1 racines.
L’équation P (x) = ex admet donc un nombre fini de solutions réelles.

Exercice 5. Théorème des Accroissements Finis
Soit f : R → R la fonction définie par f(t) = arctan(t).

f est continue et dérivable sur R.
Sa dérivée est donnée par f ′(t) = 1

1+t2 .
Pour tout t ∈ R, on a 1 + t2 ≥ 1, donc |f ′(t)| = 1

1+t2 ≤ 1.
D’après le Théorème des Accroissements Finis (TAF), pour tous réels x et y, il existe c compris entre

x et y tel que :
f(x) − f(y) = f ′(c)(x − y)

En passant à la valeur absolue :

| arctan(x) − arctan(y)| = |f ′(c)| · |x − y|

Comme |f ′(c)| ≤ 1, on en déduit :
| arctan(x) − arctan(y)| ≤ |x − y|

Considérons la fonction g(t) = et sur l’intervalle [0, x] avec x > 0. g est continue sur [0, x] et dérivable sur
]0, x[. D’après le TAF, il existe c ∈]0, x[ tel que :

g(x) − g(0)
x − 0 = g′(c) =⇒ ex − 1

x
= ec
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Comme c > 0 et que la fonction exponentielle est strictement croissante, on a ec > e0 = 1. Ainsi,
ex−1

x ≥ 1, d’où ex − 1 ≥ x.
Comme c ≤ x, on a ec ≤ ex. Ainsi, ex−1

x ≤ ex, d’où ex − 1 ≤ xex.
Le cas x = 0 est trivial (0 ≤ 0 ≤ 0). On conclut que pour tout x ≥ 0 :

x ≤ ex − 1 ≤ xex

Soit h(t) = sin(t). h est dérivable sur R et h′(t) = cos(t). Puisque pour tout t ∈ R, | cos(t)| ≤ 1, nous
appliquons l’Inégalité des Accroissements Finis (IAF) : Si une fonction f est dérivable sur un intervalle I
et que |f ′| ≤ M , alors pour tous x, y ∈ I :

|f(x) − f(y)| ≤ M |x − y|

Ici, avec M = 1, nous obtenons immédiatement :

| sin(x) − sin(y)| ≤ |x − y|

Exercice 6. 1. Étude sur [k, k + 1] : Soit f(t) = ln(t). f est continue sur [k, k + 1] et dérivable sur
]k, k + 1[. D’après le TAF, ∃c ∈]k, k + 1[ tel que :

ln(k + 1) − ln(k) = f ′(c)(k + 1 − k) = 1
c

Or, k < c < k + 1 =⇒ 1
k+1 < 1

c < 1
k . D’où :

1
k + 1 ≤ ln(k + 1) − ln(k) ≤ 1

k
.

2. Encadrement de ln(1 + x) : Appliquons le TAF à f(t) = ln(t) sur [1, 1 + x] pour x > 0. ∃d ∈]1, 1 + x[
tel que :

ln(1 + x) − ln(1)
(1 + x) − 1 = f ′(d) = 1

d
=⇒ ln(1 + x)

x
= 1

d

Comme 1 < d < 1 + x, alors 1
1+x < 1

d < 1. En multipliant par x > 0 :

x

1 + x
≤ ln(1 + x) ≤ x.

Exercice 7. Soit f : [0, +∞[→ R définie par f(x) = ln(1+x) et la suite (un) définie par u0 = 1 et un+1 = f(un).
1.a) Soit g(x) = f(x) − x = ln(1 + x) − x. La fonction g est dérivable sur [0, +∞[ comme somme de fonctions

usuelles dérivables. Sa dérivée est :

g′(x) = 1
1 + x

− 1 = 1 − (1 + x)
1 + x

= −x

1 + x

Pour tout x ∈]0, +∞[, on a −x < 0 et 1 + x > 0, donc g′(x) < 0.
La fonction g est donc strictement décroissante sur [0, +∞[. Comme g(0) = ln(1)−0 = 0, et que g est

strictement décroissante, l’équation g(x) = 0 admet 0 comme unique solution. Par conséquent, l’unique
point fixe de f sur [0, +∞[ est x = 0.

1.b) Puisque g(0) = 0 et que g est strictement décroissante sur [0, +∞[, alors pour tout x > 0, g(x) < g(0),
soit g(x) < 0.

Pour tout n ∈ N, un+1 − un = f(un) − un = g(un). Si un > 0, alors g(un) < 0, donc un+1 < un. La
suite est donc décroissante.

Montrons par récurrence que un > 0.
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Initialisation : u0 = 1 > 0.
Hérédité : Supposons un > 0. Alors 1 + un > 1, donc un+1 = ln(1 + un) > ln(1) = 0.

Ainsi, par récurrence, ∀n ∈ N, un > 0.

2) On a f ′(x) = 1
1+x . Sur [0, 1], la fonction x 7→ 1 + x est croissante et varie de 1 à 2. Par décroissance de

la fonction inverse sur R∗
+, on a 1

2 ≤ f ′(x) ≤ 1. Il en résulte que ∀x ∈ [0, 1], 0 < f ′(x) ≤ 1.
3) Soit n ∈ N. Comme un > 0, on considère l’intervalle [0, un]. f est continue sur [0, un] et dérivable sur

]0, un[. D’après le Théorème des Accroissements Finis (TAF), il existe cn ∈]0, un[ tel que :

f(un) − f(0) = f ′(cn)(un − 0) =⇒ un+1 − 0 = f ′(cn)un

En utilisant l’admission de l’énoncé |f ′(cn)| ≤ 3
4 , et comme un > 0, on obtient :

|un+1| = |f ′(cn)| · |un| ≤ 3
4 |un|

4) Récurrence :
Pour n = 0 : u0 = 1 et (3

4)0 = 1. L’inégalité 0 ≤ 1 ≤ 1 est vraie.
Hérédité : Supposons 0 ≤ un ≤ (3

4)n. D’après la question précédente, un+1 ≤ 3
4un. En injectant

l’hypothèse : un+1 ≤ 3
4

(
3
4

)n
=

(
3
4

)n+1
.

On a l’encadrement ∀n ∈ N, 0 ≤ un ≤
(

3
4

)n
. Comme la suite géométrique ((3

4)n) converge vers 0 (car
|3
4 | < 1), d’après le théorème des gendarmes, on conclut :

lim
n→+∞

un = 0
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