
Analyse 1
Série N°2

Généralités sur les suites

Exercice 1. 1. Suite an = n + (−1)n

√
3n + 2(−1)n

On factorise par n au numérateur et au dénominateur :

an =
n
(
1 + (−1)n

n

)
n
(√

3 + 2(−1)n

n

) =
1 + (−1)n

n√
3 + 2(−1)n

n

Comme
∣∣∣ (−1)n

n

∣∣∣ = 1
n , par le théorème des gendarmes, lim

n→+∞

(−1)n

n
= 0. Par quotient de limites :

lim
n→+∞

an = 1√
3

=
√

3
3

2. Suite bn = 1 + 2n

1 − 3n

On factorise par le terme prédominant au numérateur (2n) et au dénominateur (3n) :

bn =
2n
(

1
2n + 1

)
3n
(

1
3n − 1

) =
(2

3

)n

×
1

2n + 1
1

3n − 1

On sait que lim
n→+∞

(2
3

)n

= 0 car
∣∣∣23 ∣∣∣ < 1, et lim

n→+∞

1
2n + 1
1

3n − 1
= −1. Par produit :

lim
n→+∞

bn = 0

3. Suite cn = cos(πn)
On remarque que cn = (−1)n. La suite prend les valeurs 1 si n est pair et −1 si n est impair. Elle possède
deux valeurs d’adhérence distinctes, donc la suite cn n’admet pas de limite.

4. Suite dn =
cos

(
n
√

π2eln nn
)

√
n2 + 2

On utilise l’encadrement classique du cosinus : ∀n ∈ N∗, −1 ≤ cos
(

n
√

π2eln nn
)

≤ 1. En divisant par
√

n2 + 2 > 0, on obtient :
−1√

n2 + 2
≤ dn ≤ 1√

n2 + 2

Comme lim
n→+∞

−1√
n2 + 2

= lim
n→+∞

1√
n2 + 2

= 0, d’après le théorème des gendarmes :

lim
n→+∞

dn = 0

5. Suite en = en + πn

en − πn

On factorise par πn car π > e :

en =
πn
((

e
π

)n + 1
)

πn
((

e
π

)n − 1
) =

(
e
π

)n + 1(
e
π

)n − 1

Comme 0 < e
π < 1, on a lim

n→+∞

(
e

π

)n

= 0. Ainsi :

lim
n→+∞

en = 0 + 1
0 − 1 = −1
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6. Suite fn =
(
sin 1

n+1

)n+1

Pour n suffisamment grand, 0 < 1
n+1 < π

2 . On sait que sur cet intervalle 0 < sin(x) < x. On a donc :

0 <

(
sin 1

n + 1

)n+1
<

( 1
n + 1

)n+1

Comme lim
n→+∞

( 1
n + 1

)n+1
= 0, par encadrement :

lim
n→+∞

fn = 0

7. Suite gn = n+1
√

2 + (−1)n

On écrit gn = exp
(

ln(2+(−1)n)
n+1

)
. Or, 1 ≤ 2 + (−1)n ≤ 3, donc 0 ≤ ln(2 + (−1)n) ≤ ln(3). Il vient :

0 ≤ ln(2 + (−1)n)
n + 1 ≤ ln(3)

n + 1

Par le théorème des gendarmes, lim
n→+∞

ln(2 + (−1)n)
n + 1 = 0. Par continuité de l’exponentielle :

lim
n→+∞

gn = e0 = 1

Exercice 2. 1. un = 3ne−3n

On peut réécrire le terme général sous la forme d’une suite géométrique :

un = 3n(e−3)n =
( 3

e3

)n

On sait que e ≈ 2, 718, donc e3 ≈ 20, 08. Ainsi, 0 < 3
e3 < 1. La suite (un) est une suite géométrique de

raison q ∈] − 1, 1[. Elle est donc convergente.

lim
n→+∞

un = 0

2. un = ln(2n2 − n) − ln(3n + 1)
En utilisant les propriétés du logarithme (ln A − ln B = ln A

B ), on a :

un = ln
(

2n2 − n

3n + 1

)
= ln

(
n2(2 − 1

n)
n(3 + 1

n)

)
= ln

(
n ·

2 − 1
n

3 + 1
n

)

Or, lim
n→+∞

2 − 1
n

3 + 1
n

= 2
3. Par conséquent, l’argument du logarithme tend vers +∞ par produit. La suite

(un) est donc divergente.
lim

n→+∞
un = +∞

3. un =
√

n2 + n + 1 −
√

n2 − n + 1
C’est une forme indéterminée +∞ − ∞. On utilise la quantité conjuguée :

un = (n2 + n + 1) − (n2 − n + 1)√
n2 + n + 1 +

√
n2 − n + 1

= 2n√
n2(1 + 1

n + 1
n2 ) +

√
n2(1 − 1

n + 1
n2 )

En simplifiant par n (car n > 0) :

un = 2n

n
(√

1 + 1
n + 1

n2 +
√

1 − 1
n + 1

n2

) = 2√
1 + 1

n + 1
n2 +

√
1 − 1

n + 1
n2

Par somme de limites, le dénominateur tend vers 1 + 1 = 2. La suite est convergente.

lim
n→+∞

un = 2
2 = 1
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4. un = ln(n!)
n2

On sait que n! = 1 × 2 × · · · × n. Donc n! ≤ nn. Par croissance du logarithme :

0 ≤ ln(n!) ≤ ln(nn) = n ln n

En divisant par n2 :
0 ≤ un ≤ n ln n

n2 = ln n

n

Par croissances comparées, lim
n→+∞

ln n

n
= 0. D’après le théorème des gendarmes, la suite est convergente.

lim
n→+∞

un = 0

5. un =
(
2 sin 1

n + 3
4 cos n

)n

On cherche à majorer le terme à l’intérieur de la parenthèse pour n assez grand. On sait que | cos n| ≤ 1
et sin 1

n ∼ 1
n quand n → +∞. Pour n suffisamment grand (par exemple n ≥ 100), 2 sin 1

n ≤ 1
8 (Par ce

que sin 1
n → 0 lorsque n tend vers +∞) .∣∣∣∣2 sin 1

n
+ 3

4 cos n

∣∣∣∣ ≤ 1
8 + 3

4

Comme lim
n→+∞

(1
8 + 3

4)n = 0, (on a 1
8 + 3

4 = 7
8 < 1 Ainsi,

lim
n→+∞

un = 0

Exercice 3. 1. Encadrement fondamental. Pour tout x ∈ R, la partie entière ⌊x⌋ est définie par l’encadre-
ment :

x − 1 < ⌊x⌋ ≤ x

2. Encadrement de la suite un. Soit un = 1
n2

n∑
k=1

⌊kx⌋. En sommant l’encadrement précédent pour chaque

terme, on obtient :
n∑

k=1
(kx − 1) < n2un ≤

n∑
k=1

kx

En utilisant la formule
n∑

k=1
k = n(n+1)

2 , on déduit :

x
n(n + 1)

2 − n < n2un ≤ x
n(n + 1)

2

3. Limite et Convergence. En divisant par n2, on obtient l’encadrement de un :

x

2

(
1 + 1

n

)
− 1

n
< un ≤ x

2

(
1 + 1

n

)
Les deux membres encadrant un convergent vers x

2 quand n → +∞.
D’après le théorème des gendarmes :

lim
n→+∞

un = x

2

4. Conclusion sur la densité. Puisque chaque un est un nombre rationnel (somme d’entiers divisée par n2)
et que l’on peut approcher tout réel par une suite de tels rationnels, on en déduit que Q est dense dans
R.
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Exercice 4. 1. Calculons la différence un+1 − un pour tout n ∈ N :

un+1 − un = 3(n + 1) − 1
2(n + 1) + 3 − 3n − 1

2n + 3 ,

= 3n + 2
2n + 5 − 3n − 1

2n + 3

Mise au même dénominateur :

un+1 − un = (3n + 2)(2n + 3) − (3n − 1)(2n + 5)
(2n + 5)(2n + 3) ,

= (6n2 + 9n + 4n + 6) − (6n2 + 15n − 2n − 5)
(2n + 5)(2n + 3) ,

= 13n + 6 − (13n − 5)
(2n + 5)(2n + 3) ,

= 11
(2n + 5)(2n + 3) .

Comme n ≥ 0, le dénominateur est positif. On a un+1 − un > 0, donc la suite (un) est strictement
croissante.

On peut réécrire un en faisant apparaître le dénominateur au numérateur :

un =
3
2(2n + 3) − 9

2 − 1
2n + 3 ,

=
3
2(2n + 3) − 11

2
2n + 3 ,

= 3
2 − 11

2(2n + 3) .

Comme 11
2(2n+3) > 0, on a un < 3

2 pour tout n. La suite donc est majorée par 3
2 .

2. Démontrer la limite par la définition
Rappel de la définition :

lim un = L ⇐⇒ ∀ε > 0, ∃N ∈ N, ∀n ≥ N, |un − L| < ε.

Soit ε > 0. On cherche N tel que pour tout n ≥ N :∣∣∣∣3n − 1
2n + 3 − 3

2

∣∣∣∣ < ε

Alors ∣∣∣∣2(3n − 1) − 3(2n + 3)
2(2n + 3)

∣∣∣∣ =
∣∣∣∣6n − 2 − 6n − 9

4n + 6

∣∣∣∣ =
∣∣∣∣ −11
4n + 6

∣∣∣∣ = 11
4n + 6

On veut donc :
11

4n + 6 < ε ⇐⇒ 4n + 6
11 >

1
ε

,

⇐⇒ 4n + 6 >
11
ε

,

⇐⇒ n >
1
4

(11
ε

− 6
)

.

Il suffit de choisir N = max
(
0,
⌊

1
4

(
11
ε − 6

)⌋
+ 1

)
.

Ainsi, pour tout n ≥ N , l’inégalité |un − 3
2 | < ε est vérifiée. Ceci prouve que lim

n→+∞
un = 3

2 .
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Exercice 5. On considère la suite (un)n∈N définie par

un+1 = 1
2un + 1, u0 ∈ R.

1. (a) cas u0 ≤ 2. Montrons par récurrence que

∀n ∈ N, un ≤ 2.

Posons la propriété
P(n) : un ≤ 2.

— Initialisation : Par hypothèse, u0 ≤ 2, donc P(0) est vraie.
— Hérédité : Supposons P(n) vraie, c’est-à-dire un ≤ 2. Alors

un+1 = 1
2un + 1 ≤ 1

2 · 2 + 1 = 2.

Donc P(n + 1) est vraie.
Par récurrence,

∀n ∈ N, un ≤ 2.

Étudions maintenant la monotonie. Pour tout n ∈ N,

un+1 − un = 1
2un + 1 − un = 1

2(2 − un).

Comme un ≤ 2, on a 2 − un ≥ 0, d’où
un+1 − un ≥ 0.

Ainsi, la suite (un) est croissante. Puisque la suite (un) est croissante et majorée par 2. Par le théorème
de convergence des suites monotones, il existe L ∈ R tel que

lim
n→+∞

un = L.

En passant à la limite dans la relation de récurrence,

L = 1
2L + 1 ⇐⇒ L = 2.

(b) Étude du cas u0 ≥ 2. Montrons par récurrence que

∀n ∈ N, un ≥ 2.

Posons
Q(n) : un ≥ 2.

— Initialisation : u0 ≥ 2, donc Q(0) est vraie.
— Hérédité : Supposons un ≥ 2. Alors

un+1 = 1
2un + 1 ≥ 1

2 · 2 + 1 = 2.

Donc Q(n + 1) est vraie.
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Par récurrence,
∀n ∈ N, un ≥ 2.

Pour la monotonie, on a toujours
un+1 − un = 1

2(2 − un).

Comme un ≥ 2, on obtient 2 − un ≤ 0, donc

un+1 − un ≤ 0.

Ainsi, la suite (un) est décroissante. Puisque la suite (un) est décroissante et minorée par 2. Elle est
donc convergente vers une limite L vérifiant

L = 1
2L + 1 ⇐⇒ L = 2.

2. Méthode explicite. On pose
vn = un − 2.

Alors, pour tout n ∈ N,

vn+1 = un+1 − 2 =
(1

2un + 1
)

− 2 = 1
2(un − 2) = 1

2vn.

La suite (vn) est donc géométrique de raison

q = 1
2 .

On en déduit
vn = v0

(1
2

)n

= (u0 − 2)
(1

2

)n

,

et par conséquent
un = 2 + (u0 − 2)

(1
2

)n

.

Comme
lim

n→+∞

(1
2

)n

= 0,

on obtient
∀u0 ∈ R, lim

n→+∞
un = 2.

Exercice 6. Densité de Q et de R \ Q dans R
1. Soient x, y ∈ R tels que x < y. On a alors y − x > 0. D’après la propriété archimédienne de R :

∀ε > 0, ∃n ∈ N∗, nε > 1

En posant ε = y − x, il existe un entier naturel non nul n tel que n(y − x) > 1, ce qui équivaut à :

ny − nx > 1 (1)

2. Densité des rationnels (Q). Posons l’entier m = ⌊nx⌋ + 1. Par définition de la partie entière, nous avons
l’encadrement :

⌊nx⌋ ≤ nx < ⌊nx⌋ + 1

D’où :
m − 1 ≤ nx < m

Démontrons que le rationnel q = m
n répond à la condition x < q < y :
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(a) D’une part : nx < m =⇒ x < m
n .

(b) D’autre part : m ≤ nx + 1. D’après l’inéquation (1), on a 1 < ny − nx, donc :

m ≤ nx + 1 < nx + (ny − nx) = ny

On en déduit m < ny, soit m
n < y.

Alors x < m
n < y. L’ensemble Q est dense dans R.

3. Densité des irrationnels (R \ Q). Soient x < y. Appliquons le résultat précédent aux réels (x −
√

2) et
(y −

√
2) :

∃q ∈ Q, x −
√

2 < q < y −
√

2

En ajoutant
√

2 à chaque membre :
x < q +

√
2 < y

Soit α = q +
√

2. Comme q ∈ Q et
√

2 /∈ Q, alors α ∈ R \ Q.
Alors ∃α ∈ R \ Q tel que x < α < y.

4. Caractérisation séquentielle. Soit x ∈ R.
(a) Cas des rationnels : Pour tout n ∈ N∗, il existe xn ∈ Q tel que x − 1

n < xn < x. Par le théorème
des gendarmes, comme limn→∞(x − 1

n) = x, on a :

lim
n→+∞

xn = x

(b) Cas des irrationnels : Pour tout n ∈ N∗, il existe yn ∈ R \ Q tel que x − 1
n < yn < x. De la même

manière :
lim

n→+∞
yn = x

Exercice 7. 1. L’idée est de choisir un voisinage suffisamment petit autour de chaque limite pour que ces
voisinages ne se chevauchent pas.

Posons ε = ℓ′−ℓ
3 . Comme ℓ < ℓ′, on a ε > 0. Par définition de la limite :

Pour (un) : ∃N1 ∈ N tel que
∀n ≥ N1, |un − ℓ| < ε.

Ceci implique en particulier :
un < ℓ + ε.

Pour (vn) : ∃N2 ∈ N tel que
∀n ≥ N2, |vn − ℓ′| < ε.

Ceci implique en particulier :
vn > ℓ′ − ε.

Soit N = max(N1, N2). Pour tout n ≥ N , on a :

un < ℓ + ε et vn > ℓ′ − ε

Comparons ℓ + ε et ℓ′ − ε. Par construction de ε :

(ℓ′ − ε) − (ℓ + ε) = ℓ′ − ℓ − 2ε = ℓ′ − ℓ − 2
3(ℓ′ − ℓ) = 1

3(ℓ′ − ℓ) > 0

On en déduit que ℓ + ε < ℓ′ − ε. Ainsi, pour tout n ≥ N :

un < ℓ + ε < ℓ′ − ε < vn

D’où un < vn.
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2. La réciproque est fausse. Si l’on suppose que pour tout n, un < vn, on ne peut conclure que ℓ ≤ ℓ′

(inégalité large). L’inégalité stricte peut ne pas être conservée à la limite.
Contre-exemple : Soient les suites (un) et (vn) définies pour n ≥ 1 par :

un = 0 et vn = 1
n

On a bien un < vn pour tout n ∈ N∗ car 0 < 1
n . Cependant :

lim
n→+∞

un = 0 et lim
n→+∞

vn = 0

Ici ℓ = ℓ′ = 0, donc la condition ℓ < ℓ′ n’est pas vérifiée.

Exercice 8. 1. Soit ε > 0. Puisque u2n → ℓ, ∃N1 tel que

∀n ≥ N1, |u2n − ℓ| < ε.

et u2n+1 → ℓ, ∃N2 tel que
∀n ≥ N2, |u2n+1 − ℓ| < ε.

Posons N = max(2N1, 2N2 + 1).
∀k ≥ N, |uk − ℓ| < ε.

La suite (un) converge vers ℓ.
2. Considérons la suite un = (−1)n.

u2n = (−1)2n = 1 → 1.
u2n+1 = (−1)2n+1 = −1 → −1.

Les deux suites extraites convergent, mais vers des limites différentes. Elle est donc divergente.
3. Supposons que u2n → ℓ1, u2n+1 → ℓ2 et u3n → ℓ3.

* La suite (u6n) est une suite extraite de (u2n) (car 6n = 2(3n)) et de (u3n) (car 6n = 3(2n)). Par
unicité de la limite, ℓ1 = ℓ3.

* La suite (u6n+3) est une suite extraite de (u2n+1) (car 6n + 3 = 2(3n + 1) + 1) et de (u3n). Donc
ℓ2 = ℓ3.

On en déduit ℓ1 = ℓ2. D’après la question 1, la suite (un) converge.
4. On a

u2n = cos
(
2nπ + π

2n

)
= cos

(
π
2n

)
. Or lim

n→∞
π
2n = 0, donc lim u2n = cos(0) = 1.

u2n+1 = cos
(
(2n + 1)π + π

2n+1

)
= − cos

(
π

2n+1

)
. Or lim

n→∞
π

2n+1 = 0, donc lim u2n+1 = −1.
Les limites sont différentes, donc la suite (un) diverge.

5. Soit un =
n∑

k=0

(−1)k

k+1 .

(a) u2n+2 − u2n = −1
2n+2 + 1

2n+3 = −1
(2n+2)(2n+3) < 0 (décroissante).

u2n+3 − u2n+1 = 1
2n+3 − 1

2n+4 = 1
(2n+3)(2n+4) > 0 (croissante).

(b) u2n+1 − u2n = (−1)2n+1

2n+2 = −1
2n+2 → 0.

Les suites (u2n) et (u2n+1) sont adjacentes, elles convergent vers une même limite ℓ. Ainsi (un) converge
vers ℓ.

6. On a un+1 = √
unvn et vn+1 = un+vn

2 .
On a

∀n ≥ 0, un+1 ≤ vn+1.

Si un ≤ vn, alors un+1 = √
unvn ≥

√
u2

n = un (croissante) et vn+1 = un+vn
2 ≤ vn+vn

2 = vn (décroissante).
Puisque u0 ≤ un ≤ vn ≤ v0. Les deux suites sont monotones et bornées, elles convergent vers ℓu et

ℓv.
En passant à la limite dans vn+1 = un+vn

2 , on obtient ℓv = ℓu+ℓv
2 =⇒ ℓu = ℓv.
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Exercice 9. Soit θ ∈ R \ πZ. On pose un = cos(nθ) et vn = sin(nθ).

1. D’après les formules d’addition :

un+1 = un cos θ − vn sin θ

vn+1 = vn cos θ + un sin θ

Puisque θ /∈ πZ, sin θ ̸= 0. On peut exprimer chaque terme en fonction de l’autre :

vn = un cos θ − un+1
sin θ

et un = vn+1 − vn cos θ

sin θ

Par les théorèmes d’opérations sur les limites, si l’une des suites converge, l’autre converge également.
2. Supposons par l’absurde que (un) → ℓ et (vn) → ℓ′.

Par la relation cos2 + sin2 = 1, on a ℓ2 + ℓ′2 = 1.
En passant à la limite dans les relations de récurrence :

ℓ = ℓ cos θ − ℓ′ sin θ =⇒ ℓ(1 − cos θ) = −ℓ′ sin θ

ℓ′ = ℓ′ cos θ + ℓ sin θ =⇒ ℓ′(1 − cos θ) = ℓ sin θ

En élevant au carré et en additionnant :

(ℓ2 + ℓ′2)(1 − cos θ)2 = (ℓ2 + ℓ′2) sin2 θ

Comme ℓ2 + ℓ′2 = 1, on obtient (1 − cos θ)2 = sin2 θ = 1 − cos2 θ. D’où 1 − 2 cos θ + cos2 θ = 1 − cos2 θ,
soit 2 cos2 θ − 2 cos θ = 0.

Cela implique cos θ(cos θ − 1) = 0. Donc cos θ = 0 ou cos θ = 1.
* Si cos θ = 1, alors θ ∈ 2kπ, ce qui est exclu par l’énoncé.
* Si cos θ = 0, alors sin2 θ = 1. Les relations limites deviennent ℓ = −ℓ′ sin θ et ℓ′ = ℓ sin θ, ce qui

impose ℓ = ℓ′ = 0, contredisant ℓ2 + ℓ′2 = 1.
Les suites divergent.

Exercice 10. Pour tout n ∈ N∗, on pose Hn =
n∑

k=1

1
k .

1. Démontrer que H2n − Hn ≥ 1
2 :

On a H2n − Hn =
2n∑

k=n+1

1
k . Cette somme comporte n termes. Comme pour tout k ∈ {n + 1, . . . , 2n},

1
k ≥ 1

2n , on a :

H2n − Hn ≥
2n∑

k=n+1

1
2n

= n × 1
2n

= 1
2

2. Limite de (Hn) :
La suite (Hn) est croissante car Hn+1 − Hn = 1

n+1 > 0. Si elle convergeait vers ℓ ∈ R, alors

lim(H2n − Hn) = ℓ − ℓ = 0.

Ceci contredirait l’inégalité H2n − Hn ≥ 1
2 . Ainsi, la suite est croissante et non majorée, donc

lim
n→+∞

Hn = +∞.
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