Analyse 1
Série N°2

Généralités sur les suites

_1)n
Exercice 1. 1. Suite a, = M
V3n +2(=1)n
On factorise par n au numérateur et au dénominateur :
—1)n 1y
n(1+520) 14 G0
an = —_1\n = —_1\n
n(V3+2) VB4 2D
)" _ 1 L : " . .
Comme ’T‘ = -, par le théoreme des gendarmes, lim = 0. Par quotient de limites :

n—-+oo n

lm o - L Y3
1427
1—3n
On factorise par le terme prédominant au numérateur (2") et au dénominateur (3") :
2 (g +1) o\ L1
b, = = () x &
3n (3% — 1) g7 — 1

2. Suite b,, =

3

. . 2\" > .ot ,
On sait que lim (=) =0 car ‘3‘ <l,et lim % = —1. Par produit :
n—+o0 \ 3 n——4o00 Fm — 1

3. Suite ¢, = cos(mn)
On remarque que ¢, = (—1)". La suite prend les valeurs 1 si n est pair et —1 si n est impair. Elle possede
deux valeurs d’adhérence distinctes, donc la suite ¢, n’admet pas de limite.

Ccos (\/n m2eln ”")

n? +2
On utilise I’encadrement classique du cosinus : Vn € N*, —1 < cos (\/n 7726111”"> < 1. En divisant par
vn2 42 > 0, on obtient :

4. Suite d,, =

-1 1
——— <dp < ——
n2 + 2 n2 4 2

Comme lim ——— =

1
B N o B ngrfoo \/ﬁ = 0, d’apres le théoreme des gendarmes :

lim d,=0
n——+o00
eTL _|_ 7rn
n __ ﬂ-n
On factorise par 7" car ™ > e :

5. Suite e, =

n
Comme 0 < £ <1,ona lim (e) = 0. Ainsi :

n—-+o0o
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+1
6. Suite f, = (sin n%rl)n

Pour n suffisamment grand, 0 < ——

n+1

1 n+1 1 n+1
0<(Sin ) << )
n+1 n-+1

< 5. On sait que sur cet intervalle 0 < sin(z) < z. On a donc :

1 n+1
Comme lim ( ) = 0, par encadrement :
n—+oo \n + 1
nggkojh =0

7. Suite g, = "2+ (—1)»

On écrit g, = exp (W) Or, 1 <2+ (—1)" <3,donc 0 <In(2+ (—1)") <In(3). Il vient :

< In(2+ (-1)") < In(3)
- n+1 “n+1l

In(2 4+ (=1)"
Par le théoreme des gendarmes, lim M
n—-4o00 n_%l

= (0. Par continuité de I'’exponentielle :

lim g, =e"=1
n—r+00

Exercice 2. 1. u, = 3% 3"
On peut réécrire le terme général sous la forme d’une suite géométrique :

Uy = 3 (e 3" = (;)n

On sait que e ~ 2,718, donc e ~ 20, 08. Ainsi, 0 < e% < 1. La suite (uy) est une suite géométrique de
raison ¢ €] — 1, 1[. Elle est donc convergente.

2. uy, =In(2n? —n) —In(3n + 1)
En utilisant les propriétés du logarithme (In A — In B = In %), ona:

2n2 —n n?(2 — 1) 2 -1
Uy = In =In| ———F | =In(n- n
9_1

Or, lim 1 = . Par conséquent, 'argument du logarithme tend vers +oo par produit. La suite
nﬁ+a334-5 3

(uy) est donc divergente.

lim wu, = +oc0
n—+400

3. up=vVn2+n+1—vn2—n+1

C’est une forme indéterminée +o0o — co. On utilise la quantité conjuguée :
(P +n+1l) - —n+1) 2n

Vit n sl vel —nt 1 21 ) el (- )

n

n

En simplifiant par n (car n > 0) :
" — 2n _ 2
on(irlvEry1-1+&) Jieleke/1-i+h
Par somme de limites, le dénominateur tend vers 1 + 1 = 2. La suite est convergente.
2

lim u, ===
n——+o0o 2

1
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4. u, = —mﬁ;!)

On sait que n! =1 x 2 x --- x n. Donc n! < n™. Par croissance du logarithme :

0 <In(n!) <In(n")=nlnn

En divisant par n? :

Inn
Par croissances comparées, hr}rl —— = 0. D’apres le théoreme des gendarmes, la suite est convergente.
n—+oo n

n
9. Up = (2sin% + %cosn)
On cherche & majorer le terme a l'intérieur de la parentheése pour n assez grand. On sait que | cosn| < 1
et sin% ~ % quand n — +o00. Pour n suffisamment grand (par exemple n > 100), QSin% < é (Par ce
que sin% — 0 lorsque n tend vers +00) .

9 i 1 n 3 < 1 n 3
in—+ - -+ -
sin — + S cosn| < o4
: 1, 3\n _ 1,3_7 -
Comme ngrilw(g +9)" =0, (ona g+ 7= ¢ <1 Ainsi,
lim u, =0
n—+00
Exercice 3. 1. Encadrement fondamental. Pour tout = € R, la partie entiére |x| est définie par I’encadre-

ment :
r—1<|z| <z

NgE

2. Encadrement de la suite u,. Soit u, = # |kz]. En sommant l’encadrement précédent pour chaque

k=1

terme, on obtient :
n

Z(k:x —1) < n?u, < ka

k=1 k=1
- L n(n+1) 4 .
En utilisant la formule ) k = ==, on déduit :
k=1
1 1
177”(” +1) —n < nu, < CBLH +1)

2 - 2

2

3. Limite et Convergence. En divisant par n“, on obtient ’encadrement de u,, :

T 1 1 x 1
|14+ —=)—=<u, < - |1+ -
2 n n 2 n

Les deux membres encadrant u, convergent vers § quand n — +oo.
D’apres le théoréme des gendarmes :

I -
im wu, =—
n——4oo 2

4. Conclusion sur la densité. Puisque chaque u,, est un nombre rationnel (somme d’entiers divisée par n?)

et que 'on peut approcher tout réel par une suite de tels rationnels, on en déduit que Q est dense dans
R.
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Exercice 4. 1. Calculons la différence uy, 11 — uy, pour tout n € N :

3(n+1)—1 3n-—1
2n+1)+3 2n+3
3n+2 3n-1
T 2m+5 2n+3

Up41 — Up =

Mise au méme dénominateur :

Bn+2)2n+3)—(3n—1)(2n+5)

Up+1 — Un =

(2n +5)(2n + 3) ’
_ (6n? +9n+4n +6) — (6n + 150 — 2n — 5)
N (2n +5)(2n + 3) ’
~ 13n+6—(13n —5)
- (2n+5)(@2n+3)
B 11
 (2n+5)(2n+3)

Comme n > 0, le dénominateur est positif. On a up4+1 — u, > 0, donc la suite (u,) est strictement
croissante.

On peut réécrire u,, en faisant apparaitre le dénominateur au numérateur :

S2n+3)—-2-1

Up = >
2n+3
_§n+3) -4
N 2n+3 ’
_3__u
2 22n+3)
Comme % >0, on a u, < % pour tout n. La suite donc est majorée par %

2. Démontrer la limite par la définition
Rappel de la définition :

limu, =L < Ve >0,IN € N,Vn > N, |u, — L| < e.

Soit € > 0. On cherche N tel que pour tout n > N :

‘Sn—l 3’<
m+3 2|°°
Alors
2@n—n—3an+@’_(m—2—6n—ﬂ_w-41’_ 11
2(2n + 3) B 4n +6 ~ |4n 46| 4n+6
On veut donc :
11 o e 4dn + 6 1
4n + 6 c 11 g’

11
= 4n+6>?,

1(11 )
<~ n>-(——-6).
4\ ¢

11 suffit de choisir N = max (0, E (H — 6)J + 1).

€

Ainsi, pour tout n > N, l'inégalité |u,, — %| < € est vérifiée. Ceci prouve que liril Up = %
n—-—+0oo

mohamednajiblaatabi.com Analyse Réelle — Cours & TD


https://mohamednajiblaatabi.com/bibliotheque-de-cours-et-ressources-pedagogiques/

Exercice 5. On consideére la suite (uy,)nen définie par

1. (a)

1
Upt+1 = iun +1, ug € R.

cas ug < 2. Montrons par récurrence que
Vn € N, Uy < 2.

Posons la propriété
Pn): u, <2

— Initialisation : Par hypothese, up < 2, donc P(0) est vraie.
— Hérédité : Supposons P(n) vraie, c’est-a-dire u, < 2. Alors

1 1
un+1:§un+1§§~2+1:2.
Donc P(n + 1) est vraie.
Par récurrence,
Vn € N, Uy < 2.
Etudions maintenant la monotonie. Pour tout n € N,
1
Unt1 = Un = SUn +1—-u, = 5(2 — Up).

Comme u, <2,o0n a2 —u, >0, dou
Upt1 — Up > 0.

Ainsi, la suite (uy,) est croissante. Puisque la suite (u,,) est croissante et majorée par 2. Par le théoréme

de convergence des suites monotones, il existe L € R tel que

lim w, = L.
n—-+4o0o

En passant a la limite dans la relation de récurrence,

1
L:§L+1 <~ L=2.

Etude du cas ug > 2. Montrons par récurrence que
Vn € N, Uy > 2.

Posons
Q(n): uy>2.

— Initialisation : uy > 2, donc Q(0) est vraie.
— Hérédité : Supposons u, > 2. Alors

DN | =

1
Un+1 = §Un +1>

Donc Q(n + 1) est vraie.

24+1=2.
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Par récurrence,
Vn € N, Uy, > 2.

Pour la monotonie, on a toujours
1
Uptl — Up = 5(2 — Up).
Comme u,, > 2, on obtient 2 — u,, < 0, donc

Upt1 — Up < 0.

Ainsi, la suite (u,) est décroissante. Puisque la suite (u,) est décroissante et minorée par 2. Elle est
donc convergente vers une limite L vérifiant

1
L:§L+l — L=2.

2. Méthode explicite. On pose
Up = Up — 2.

Alors, pour tout n € N,

1 1 1
Upgl = Upyl — 2 = (2un + 1) —2=—(up—2) = -vp.

La suite (v,,) est donc géométrique de raison

1
q = 9’
On en déduit
1\" 1\"
w=m(3) —w-2(3)
et par conséquent
1 n
= 2+ (ug — 2) <2)
Comime
1 n
lim <) =0,
n——+oo \ 2
on obtient
Yug € R, lim wu, =2
n—-+o0o

Exercice 6. Densité de Q et de R\ Q dans R

1. Soient =,y € R tels que = < y. On a alors y — x > 0. D’apres la propriété archimédienne de R :
Ve>0,In e N*, ne>1
En posant € = y — x, il existe un entier naturel non nul n tel que n(y — x) > 1, ce qui équivaut a :
ny —nx > 1 (1)

2. Densité des rationnels (Q). Posons l'entier m = |nz| + 1. Par définition de la partie entiere, nous avons
l’encadrement :
|nz] <nx < |[nz|+1
Dot :
m—1<nr<m

m

Démontrons que le rationnel ¢ = 7 répond a la condition z < ¢ <y :

mohamednajiblaatabi.com Analyse Réelle — Cours & TD


https://mohamednajiblaatabi.com/bibliotheque-de-cours-et-ressources-pedagogiques/

(a) D’une part : nx <m = x <™.
(b) D’autre part : m < nx + 1. D’apres I'inéquation (1), on a 1 < ny — nz, donc :

m < nz+1<nz+ (ny—nz)=ny

On en déduit m < ny, soit * < y.
Alors z < 7 < y. L’ensemble Q est dense dans R.

3. Densité des irrationnels (R \ Q). Soient x < y. Appliquons le résultat précédent aux réels (v — v/2) et
(y—V2):
JgeQ, z—-V2<qg<y—V2

En ajoutant v/2 & chaque membre :
r<q+vV2<y

Soit @ = ¢ 4 v/2. Comme ¢ € Q et v/2 ¢ Q, alors a € R\ Q.
Alors o € R\ Q tel que z < a < y.

4. Caractérisation séquentielle. Soit x € R.

1

(a) Cas des rationnels : Pour tout n € N*, il existe z, € Q tel que z —

des gendarmes, comme lim,, o (x — %) =z,ona:

< x, < x. Par le théoreme

lim z, ==«
n—-4o00

b) Cas des irrationnels : Pour tout n € N*, il existe y, € R\ Q tel que z — 1 < y,, < z. De la méme
n

maniere :
lim y, ==
n——+oo
Exercice 7. 1. L’idée est de choisir un voisinage suffisamment petit autour de chaque limite pour que ces

voisinages ne se chevauchent pas.

Posons € = K,?_Z. Comme £ < /', on a € > 0. Par définition de la limite :
Pour (u,) : 3N € N tel que
Vn > Ny, |u, — €| < e.

Ceci implique en particulier :
Up < {+e.

Pour (v,,) : 3Nz € N tel que
Vn > No, v, — 0| < e.

Ceci implique en particulier :
vy >0 —¢.

Soit N = max(Ny, N2). Pour tout n > N, on a :
Up <l+e et v, >0 —¢

Comparons £ + € et ¢/ — . Par construction de ¢ :

2 1
(o) = (tre) =t —t—2e=t—L—(( ~0)=3(t' =) >0

On en déduit que £ + & < ¢/ — e. Ainsi, pour tout n > N :

U, < l+e<l —e<u,

) s
D’ou u,, < vy,
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2. La réciproque est fausse. Si I'on suppose que pour tout n, u, < v,, on ne peut conclure que £ < ¢/
(inégalité large). L’inégalité stricte peut ne pas étre conservée a la limite.
Contre-exemple : Soient les suites (uy,) et (vy,) définies pour n > 1 par :

1
u, =0 et v,=-—
n

On a bien u, < v, pour tout n € N* car 0 < % Cependant :

lim u, =0 et lim v, =0
n—-+00 n——+oo

Ici £ = ¢ =0, donc la condition ¢ < ¢’ n’est pas vérifiée.

Exercice 8. 1. Soit € > 0. Puisque us, — ¢, N7 tel que
Vn > Ny, |’LL2n — €| <e.

et uopr1 — £, N5 tel que
Vn > N, |ZL2n+1 — E’ < E.

Posons N = max(2Np,2Ns + 1).
Vk > N, |up — | < e.

La suite (uy,) converge vers £.

2. Considérons la suite u,, = (—1)".
Ugp = (—1)2" =1 — 1.
U2p+1 = (_1)2n+1 =—-1——1.
Les deux suites extraites convergent, mais vers des limites différentes. Elle est donc divergente.
3. Supposons que ua, — £1, Ugpt1 — o et uz, — 3.
* La suite (ug,) est une suite extraite de (ug,) (car 6n = 2(3n)) et de (us,) (car 6n = 3(2n)). Par
unicité de la limite, #1 = £3.
* La suite (ugnt3) est une suite extraite de (ugn41) (car 6n+3 = 2(3n + 1) + 1) et de (usy). Donc
ly = Us.
On en déduit 1 = ¢5. D’apres la question 1, la suite (u,) converge.
4. On a
Uy = cos (2nm + ) = cos (5=). Or lim 7% = 0, donc lim ugy, = cos(0) = 1.

Ugp+1 = COS ((2n + )+ m) = — Cos (2n+1) Or hm ﬁ =0, donc lim ug, 11 = —1.
Les limites sont différentes, donc la suite (u,) diverge.
N \k
5. Soit u, = 3. I

(a) uzny2 — u2n 2n+2 + 2n+3 = (2n+2)(2n+3) < 0 (décroissante).

1 1 :
U2n4+3 — U2n+1 = 55,73 2n+4 @@ty > (croissante).

- _1)2n+1
(b) uznt1 = uzn = G5 = g5 — 0-
Les suites (ugy) et (u2,+1) sont adjacentes, elles convergent vers une méme limite ¢. Ainsi (u,) converge
vers /.
6. On a upq1 = \/UnVp €t Vpy1 = %
On a

Vn > 0,upy1 < Upyr.

Si Uy, < vy, alors up1 = fUnUy > \/uz = uy, (croissante) et vy, = % < % = vy, (décroissante).
Puisque ug < uy, < v, < vg. Les deux suites sont monotones et bornées, elles convergent vers £, et
ly.

En passant & la limite dans v, = Y=d¥n

fn on obtient £, = ffle — £, = ¢,
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Exercice 9. Soit § € R\ 7Z. On pose u,, = cos(nf) et v,, = sin(nfh).

1. D’apres les formules d’addition :

Upt1 = Up COSH — vy sin b

Upt1 = Up €OS 0 + up sin b

Puisque 0 ¢ 7Z, sin @ # 0. On peut exprimer chaque terme en fonction de l'autre :

Up, COS 0 — Upy1 Up41 — Up cOS O

Up = et u, =

sin 6 sin 6
Par les théoremes d’opérations sur les limites, si 'une des suites converge, 'autre converge également.
2. Supposons par 'absurde que (u,) — £ et (v,) — ¢'.
Par la relation cos? +sin? =1, on a £2 + ("2 = 1.

En passant a la limite dans les relations de récurrence :
{="{cosf —{'sinf = ((1 —cosf) =—sinf
' ="1cosf+¢sinf = (1 —cosf) = £sinf

En élevant au carré et en additionnant :
(02 +0%)(1 — cos0)? = (12 + £"%)sin® 0

Comme (2 4 "2 = 1, on obtient (1 — cosf)? =sin?0 = 1 — cos? . D’ott 1 — 2cos @ + cos?§ = 1 — cos? 0,
soit 2 cos? 6 — 2cosf = 0.
Cela implique cos#(cosf — 1) = 0. Donc cosf = 0 ou cosf = 1.
* Sicosf =1, alors 0 € 2km, ce qui est exclu par I’énoncé.
* Si cosf = 0, alors sin®?6 = 1. Les relations limites deviennent ¢ = —¢'sin et ¢ = ¢sin6, ce qui
impose ¢ = ¢/ = 0, contredisant ¢ 4+ ¢? = 1.
Les suites divergent.

Exercice 10. Pour tout n € N*, on pose H,, = kil %
1. Démontrer que Hy, — H,, > % : )
On a Hy, — H, = 227% % Cette somme comporte n termes. Comme pour tout k € {n +1,...,2n},
%Zﬁ,ona: e
2n
Hy, — Hy, > Z %—nx%:%
k=n+1

2. Limite de (H,) :
La suite (H,,) est croissante car Hy41 — H,, = n%rl > 0. Si elle convergeait vers ¢ € R, alors

lim(Hsy, — Hp) =4 — £ =0.
Ceci contredirait I'inégalité Hop — Hy > % Ainsi, la suite est croissante et non majorée, donc

lim H, = +oo.

n—-+o0o
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