
Examen d’Analyse 1

Durée 1h30

Exercice 1. 1. Donner le nombre 0, 336433643364 . . . sous la forme a
b avec a ∈ Z et b ∈ N∗.

2. (a) Montrer que pour tout réel x > 0, on a les inégalités suivantes :

1
x + 1 < ln

(
1 + 1

x

)
<

1
x

(En utilisant TAF pour la fonction f(t) = ln(t) sur [x, x + 1]).)
(b) En déduire la limite de la suite dont le terme général est :

un =
(

1 + 1
n

)n

3. Soient a et b deux réels strictement positifs. Les parties suivantes sont-elles majorées, minorées ? Si oui,
déterminer leurs bornes supérieures et inférieures.

(a) A = {a + bn | n ∈ N}
(b) B =

{
(−1)na + b

n | n ∈ N∗
}

(c) C =
{

a + (−1)nb
n | n ∈ N∗

}

Exercice 2. Théorème du point fixe de Banach
Soient a < b deux réels, f : [a, b] → [a, b] et λ ∈]0, 1[. On suppose que f est contractante : pour tout (x, y) ∈
[a, b]2, |f(x) − f(y)| ≤ λ|x − y|. Le but de cet exercice est de montrer que f possède un unique point fixe :
∃!x∗ ∈ [a, b] tel que f(x∗) = x∗.

On fixe u0 ∈ [a, b] et on considère la suite définie récursivement par un = f(un−1) pour n ≥ 1.

1. (a) Montrer que, pour tout n ∈ N, |un+1 − un| ≤ λn|u1 − u0|.
(b) En utilisant le point précédent, montrer que, pour tout n, m ∈ N, |un+m − un| ≤ λn

1−λ |u1 − u0|.
(c) En déduire que la suite (un) converge vers une limite ℓ ∈ [a, b].

2. Montrer que, pour tout n ∈ N, |f(ℓ) − ℓ| ≤ |f(ℓ) − f(un)| + |un+1 − ℓ|. En déduire que f(ℓ) = ℓ, ce qui
montre l’existence d’un point fixe.

3. Supposer que x∗ et y∗ soient deux points fixes. Montrer que |x∗ − y∗| ≤ λ|x∗ − y∗| et donc que x∗ = y∗.

Exercice 3. Soit f : R → R une fonction continue. Le but de cet exercice est de montrer que les deux assertions
suivantes sont équivalentes :

(i) f(x + y) = f(x) + f(y) pour tout (x, y) ∈ R2 ;
(ii) il existe c ∈ R tel que f(x) = cx pour tout x ∈ R.
Vérifier tout d’abord que (ii) implique (i), puis prouver que (i) implique (ii) en procédant comme suit :

a) Montrer que f(0) = 0.
b) Montrer que f(−x) = −f(x) pour tout x ∈ R.
c) Montrer que f(nx) = nf(x) pour tout n ∈ N et x ∈ R.
d) Montrer que f(n) = nf(1) pour tout n ∈ N. On pose c = f(1).

e) Montrer que f
(

1
n

)
= c · 1

n pour tout n ∈ Z \ {0}.

f) Montrer que f(q) = c · q pour tout q ∈ Q.
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g) Utiliser la continuité de f pour en conclure que f(x) = c · x pour tout x ∈ R.

Exercice 4. Soient I un intervalle ouvert de R et f : I → R une fonction trois fois dérivable sur I. Soient a et
b deux éléments de I tels que a < b. Soit g : I → R la fonction définie par :

g(x) = f(x) − f(a) − x − a

2 (f ′(a) + f ′(x)) + K(x − a)3

où K est le nombre réel tel que g(b) = 0.

1. Montrer que g est deux fois dérivable sur I, et calculer g′(x) pour tout x ∈ I.
2. Montrer qu’il existe un nombre c ∈]a, b[ tel que g′(c) = 0.
3. Montrer qu’il existe un nombre θ ∈]a, b[ tel que :

f(b) − f(a) = b − a

2 (f ′(a) + f ′(b)) − (b − a)3

12 f ′′′(θ)
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