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Symboles et abréviations

Symbole Description / Signification Chapitre
N,Z,Q,R Ensembles des entiers (nat., rel.), rationnels et réels 1
|x| Valeur absolue de x 1
sup(E), inf(E) Borne supérieure et borne inférieure de l’ensemble E 1
E(x) ou ⌊x⌋ Partie entière du réel x 1
(un)n∈N Suite numérique 2
lim

n→+∞
un Limite d’une suite 2

∀, ∃, =⇒ Pour tout, il existe, implique (Logique) 2
ϵ (epsilon) Un réel strictement positif aussi petit que l’on veut 2
f : I → R Fonction réelle définie sur un intervalle I 3
lim

x→x0
f(x) Limite de la fonction f quand x tend vers x0 3

f ◦ g Composition des fonctions f et g 3
f−1 Fonction réciproque de f 3
f ′(x) Dérivée première de f au point x 4
f ′

g(x), f ′
d(x) Dérivée à gauche et dérivée à droite 4

f (n)(x) Dérivée d’ordre n (dérivées successives) 4
TAF / IAF Théorème / Inégalité des Accroissements Finis 4
f ′′ Dérivée seconde (utilisée pour la convexité) 4
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4 Fonctions dérivables

4.1 Définition de la Dérivabilité
Soient I un intervalle de R, f : I → R une fonction et x0 ∈ I.

On dit que f est dérivable en x0 si

f(x) − f(x0)
x − x0

a une limite finie quand x tend vers x0.
Cette limite est notée f ′(x0) et s’appelle la dérivée de f en x0. On a alors :

f ′(x0) = lim
x→x0

f(x) − f(x0)
x − x0

= lim
h→0

f(x0 + h) − f(x0)
h

On dit que f est dérivable sur I si, quel que soit x0 ∈ I, f est dérivable en x0. Dans
ce cas, la fonction f ′ : I → R qui à x associe f ′(x) s’appelle l’application dérivée de
f .

Définition 4.1.1: Dérivabilité en un point

La droite qui passe par les points distincts (x0, f(x0)) et (x, f(x)) a pour coefficient
directeur :

f(x) − f(x0)
x − x0

À la limite, on trouve que le coefficient directeur de la tangente est f ′(x0). Une
équation de la tangente au point (x0, f(x0)) est donc :

y = f ′(x0)(x − x0) + f(x0)

Définition 4.1.2: Tangente

Dire que f est dérivable en x0, c’est dire que la courbe de f peut être approchée localement
par une droite (voir Figure 4.1).

L’équation de la tangente est donnée par la partie affine du développement :
y(x) = f(x0) + f ′(x0)(x − x0)

1



CHAPITRE 4. FONCTIONS DÉRIVABLES 2
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Figure 4.1 – La tangente (en rouge) réalise la meilleure approximation affine locale de la
courbe Cf au point x0.

Considérons la fonction f(x) = x2 définie sur R. Cherchons la dérivée en un point x0 ∈ R
quelconque.

f ′(x0) = lim
h→0

f(x0 + h) − f(x0)
h

= lim
h→0

(x0 + h)2 − x2
0

h

= lim
h→0

x2
0 + 2x0h + h2 − x2

0
h

(Développement)

= lim
h→0

2x0h + h2

h
= lim

h→0
(2x0 + h) (Simplification par h)

= 2x0

La fonction est dérivable sur R et f ′(x) = 2x.

Exemple 1:La fonction carrée

Soit f : I → R une fonction et x0 ∈ I. f est dérivable en x0 si et seulement s’il existe un
réel ℓ ∈ R (qui est alors égal à f ′(x0)) et une fonction ε : I → R tels que lim

x→x0
ε(x) = 0

avec :
f(x) = f(x0) + (x − x0)ℓ + (x − x0)ε(x)

Définition 4.1.3: Proposition

Si f est dérivable en un point x0 ∈ I, alors f est continue en x0.
Proposition 4.1.1:
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CHAPITRE 4. FONCTIONS DÉRIVABLES 3

Démonstration. Supposons que f est dérivable en x0. D’après la Proposition 4.1.3 , nous
pouvons écrire f(x) sous la forme :

f(x) = f(x0) + (x − x0)f ′(x0) + (x − x0)ε(x)

où lim
x→x0

ε(x) = 0.
Étudions la limite de f(x) quand x tend vers x0, on a : lim

x→x0
(x−x0)f ′(x0) = 0×f ′(x0) = 0

et limx→x0(x − x0)ε(x) = 0 × 0 = 0. Par somme de ces limites, on obtient :

lim
x→x0

f(x) = f(x0)

Par définition, la fonction f est donc continue en x0. ■

4.1.1 Opérations sur les fonctions dérivables

Théorème 4.1.1:
Soit I =]a, b[ un intervalle de R et x0 ∈ I. Soient f et g deux fonctions réelles définies
sur I et dérivables en x0. Soit λ ∈ R une constante.
Alors, les fonctions f +g, λf et fg sont dérivables en x0 et on a les formules suivantes :

Somme : (f + g)′(x0) = f ′(x0) + g′(x0)
Produit par un scalaire : (λf)′(x0) = λf ′(x0)
Produit : (fg)′(x0) = f ′(x0)g(x0) + f(x0)g′(x0)

De plus, si g(x0) ̸= 0, la fonction quotient f

g
est dérivable en x0 et :

(
f

g

)′

(x0) = f ′(x0)g(x0) − f(x0)g′(x0)
(g(x0))2

Soit la fonction h définie sur R∗ par :

h(x) = ex

x

Ici, nous avons f(x) = ex et g(x) = x. Les deux fonctions sont dérivables sur R∗ et
g(x) ̸= 0.

f ′(x) = ex

g′(x) = 1
Appliquons la formule du quotient :

h′(x) = f ′(x)g(x) − f(x)g′(x)
(g(x))2

= ex · x − ex · 1
x2

= ex(x − 1)
x2

Exemple 2:
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CHAPITRE 4. FONCTIONS DÉRIVABLES 4

4.2 Dérivabilité de la composée et de la réciproque

4.2.1 Dérivée de la fonction composée

Théorème 4.2.1:
Soient f : I → R et g : f(I) → R deux fonction, I un intervalle ouvert de R et x0 ∈ I.
Si f dérivable en x0 et g dérivable en f(x0). Alors, la fonction g ◦ f est dérivable en x0
et :

(g ◦ f)′(x0) = g′(f(x0)) × f ′(x0)

Démonstration. Puisque f est dérivable en x0, on a : f(x) = f(x0) + (x − x0)(f ′(x0) + εf (x))
avec lim

x→x0
εf (x) = 0.

De même, puisque g est dérivable en y0 = f(x0), on a : g(y) = g(y0)+(y−y0)(g′(y0)+εg(y))
avec lim

y→y0
εg(y) = 0.

En posant y = f(x) et en substituant le développement de f dans celui de g, on obtient :

g(f(x)) = g(f(x0)) + (f(x) − f(x0)) [g′(f(x0)) + εg(f(x))]

En remplaçant (f(x) − f(x0)) par sa forme développée, il vient :

g(f(x)) = g(f(x0)) + (x − x0) (f ′(x0) + εf (x)) [g′(f(x0)) + εg(f(x))]︸ ︷︷ ︸
A(x)

Quand x → x0, on a f(x) → f(x0), donc εg(f(x)) → 0 et εf (x) → 0. Ainsi, lim
x→x0

A(x) =
f ′(x0) · g′(f(x0)). D’après la Définition et Proposition 4.1.3, cela prouve que g ◦ f est
dérivable et donne la formule de la dérivée. ■

4.2.2 Dérivée de la fonction réciproque

Théorème 4.2.2: Théorème de la bijection et sa dérivée
Soit f : I → f(I) une bijection continue. Si f est dérivable en x0 et f ′(x0) ̸= 0, alors
la fonction réciproque f−1 est dérivable en y0 = f(x0) et :

(f−1)′(y0) = 1
f ′(x0)

Démonstration. Posons y = f(x) et y0 = f(x0). Puisque f est une bijection continue, y → y0
équivaut à x → x0. Considérons le taux d’accroissement de f−1 en y0 :

f−1(y) − f−1(y0)
y − y0

= x − x0

f(x) − f(x0)
= 1

f(x)−f(x0)
x−x0

Comme f est dérivable en x0, le dénominateur tend vers f ′(x0) quand x → x0. Puisque
f ′(x0) ̸= 0, la limite du quotient existe et vaut 1

f ′(x0) . Ainsi, f−1 est dérivable en y0. ■

mohamednajiblaatabi.com 4 Analyse Réelle— Cours & TD

https://mohamednajiblaatabi.com/bibliotheque-de-cours-et-ressources-pedagogiques/


CHAPITRE 4. FONCTIONS DÉRIVABLES 5

En utilisant la règle de la composée sur l’identité f(f−1(y)) = y, on retrouve la formule :

(f−1)′(y) × f ′(f−1(y)) = 1 =⇒ (f−1)′(y) = 1
f ′(f−1(y))

Remarque 1:

La fonction f(x) = x2 est continue et strictement croissante sur I =]0, +∞[. Elle réalise
une bijection vers J =]0, +∞[. Sa réciproque est f−1(y) = √

y.
On sait que f ′(x) = 2x. Comme x > 0, f ′(x) ̸= 0. Appliquons la formule pour

trouver la dérivée de √
y en un point y0 :

(√y)′(y0) = 1
f ′(x0)

avec x0 = √
y0

(√y)′(y0) = 1
2x0

= 1
2√

y0

On retrouve bien la formule connue : (
√

x)′ = 1
2
√

x
.

Exemple 3:Calcul de la dérivée de
√

x

Soit f une bijection dérivable en x0 telle que f ′(x0) ̸= 0. L’équation de la tangente à la
courbe de la fonction réciproque f−1 au point y0 = f(x0) s’écrit :

x = 1
f ′(x0)

(y − y0) + f−1(y0)

Proposition 4.2.1: Équation de la tangente de f−1

Démonstration. On a
(f−1)′(y0) = 1

f ′(x0)
En applique donc la définition de équation de la tangente et on obtien alors

x = 1
f ′(x0)

(y − y0) + f−1(y0)

■

4.3 Dérivabilité à gauche et à droite
Lorsque la limite du taux d’accroissement n’est pas la même selon qu’on s’approche de

x0 par valeurs inférieures ou supérieures, on définit les dérivées latérales.

Soit f une fonction définie sur un intervalle I et x0 ∈ I.
* Dérivabilité à droite : f est dérivable à droite en x0 si la limite suivante existe

et est finie :
lim

x→x+
0

f(x) − f(x0)
x − x0

= f ′
d(x0)

Définition 4.3.1:
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On appelle f ′
d(x0) le nombre dérivé à droite.

* Dérivabilité à gauche : f est dérivable à gauche en x0 si la limite suivante existe
et est finie :

lim
x→x−

0

f(x) − f(x0)
x − x0

= f ′
g(x0)

On appelle f ′
g(x0) le nombre dérivé à gauche.

Théorème 4.3.1: Condition de dérivabilité
Une fonction f est dérivable en x0 si et seulement si :

i) Elle est dérivable à droite et à gauche en x0.
ii) Les nombres dérivés sont égaux : f ′

d(x0) = f ′
g(x0).

Si f est dérivable à gauche et à droite mais que f ′
g(x0) ̸= f ′

d(x0), alors la fonction n’est
pas dérivable en x0.

La courbe admet deux demi-tangentes distinctes au point M0(x0, f(x0)).
On dit que le point M0 est un point anguleux.

x

y

y = |x|

Pente f ′
d(0) = 1Pente f ′

g(0) = −1

Point anguleux (0,0)

Ici f ′
g(0) ̸= f ′

d(0) =⇒ Non dérivable en 0

Figure 4.2 – Illustration d’un point anguleux avec la fonction valeur absolue. Les pentes à
gauche et à droite ne s’alignent pas.

La fonction f(x) = |x| est continue en 0.
— À droite (x > 0), f(x) = x, donc f ′

d(0) = 1.
— À gauche (x < 0), f(x) = −x, donc f ′

g(0) = −1.
Comme 1 ̸= −1, f n’est pas dérivable en 0.

Exemple 4:

4.4 Dérivées successives
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CHAPITRE 4. FONCTIONS DÉRIVABLES 7

Soit f une fonction définie sur un intervalle I. On définit les dérivées successives par
récurrence. La dérivée d’ordre 0 de f , notée f (0), est la fonction f elle-même. Pour tout
entier naturel n, si la dérivée d’ordre n, notée f (n), est définie et dérivable sur I, on
appelle dérivée d’ordre n + 1 la dérivée de f (n). On la note f (n+1).

Une fonction est dite de classe Cn sur I si elle est n fois dérivable et que sa dérivée
d’ordre n est continue sur I. Si elle est dérivable à tout ordre, on dit qu’elle est de classe
C∞.

Définition 4.4.1: Dérivées successives

Théorème 4.4.1: Formule de Leibniz
Soient f et g deux fonctions de classe Cn sur un intervalle I. La fonction produit f · g
est également de classe Cn sur I, et sa dérivée d’ordre n est donnée par la formule
suivante :

(f · g)(n) =
n∑

k=0

(
n

k

)
f (k)g(n−k)

où
(

n
k

)
= n!

k!(n−k)! représente les coefficients binomiaux (combinaisons).

Démonstration. La démonstration s’effectue par récurrence sur l’entier n. Pour n = 1, on
retrouve la formule classique de la dérivée d’un produit : (fg)′ = f ′g + fg′. En supposant la
propriété vraie au rang n, on dérive l’expression de la somme. L’utilisation de la relation de
Pascal sur les coefficients binomiaux,

(
n
k

)
+
(

n
k−1

)
=
(

n+1
k

)
, permet de regrouper les termes et

d’obtenir la formule au rang n + 1. ■

4.5 Extremum local et Théorème de Rolle

4.5.1 Extremum local

Soit f : I → R et c un point intérieur à I.
i) f admet un maximum local en c si : ∃δ > 0, ∀x ∈ I∩]c − δ, c + δ[, f(x) ≤ f(c)
ii) f admet un minimum local en c si : ∃δ > 0, ∀x ∈ I∩]c − δ, c + δ[, f(x) ≥ f(c)

Définition 4.5.1: Extremum local

Théorème 4.5.1: Condition nécessaire d’extremum (Fermat)
Soit f :]a, b[→ R une fonction dérivable en x0 ∈]a, b[.

Si x0 est un extremum local de f, alors f ′(x0) = 0

Démonstration. Soit f dérivable sur un ouvert I et x0 ∈ I un point où f admet un maximum
local. Alors il existe un voisinage J ⊂ I de x0 tel que pour tout x ∈ J , f(x) ≤ f(x0). Soit τ
le Taux d’accroissement définie par :

τ(h) = f(x0 + h) − f(x0)
h

pour h petit .
Le numérateur f(x0 +h)−f(x0) est toujours négatif ou nul par définition du maximum.
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cmin − δ cmin + δ cmax − δcmax + δ

Min local
2δ

Max local

2δ
x

f(x)

Figure 4.3 – Représentation graphique d’un maximum et d’un minimum local avec leurs
voisinages d’étude associés.

i) À droite (h > 0) : Le quotient est négatif : τ(h) ≤ 0. En passant à la limite :

f ′(x0) = lim
h→0+

τ(h) ≤ 0

ii) À gauche (h < 0) : Le dénominateur change de signe, donc le quotient est positif :
τ(h) ≥ 0. En passant à la limite :

f ′(x0) = lim
h→0−

τ(h) ≥ 0

La fonction f étant dérivable en x0, les limites à gauche et à droite sont égales :

0 ≤ f ′(x0) ≤ 0 =⇒ f ′(x0) = 0

(Le raisonnement est analogue pour un minimum local en inversant le signe du
numérateur.)

■

4.5.2 Théorème de Rolle

Théorème 4.5.2: Théorème de Rolle
Soit f : [a, b] → R vérifiant les trois hypothèses suivantes :

i) f ∈ C0([a, b]) (continuité sur le fermé)
ii) f est dérivable sur ]a, b[
iii) f(a) = f(b)

Alors : ∃c ∈]a, b[, f ′(c) = 0

Démonstration. D’après le théorème des bornes atteintes (Weierstrass), comme f ∈ C0([a, b]),
il existe xm, xM ∈ [a, b] tels que :

f(xm) = m = min
x∈[a,b]

f(x) et f(xM) = M = max
x∈[a,b]

f(x)
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a c b

f(a) = f(b)

f ′(c) = 0

x

f(x)

Figure 4.4 – Théorème de Rolle : la condition f(a) = f(b) implique l’existence d’un point
c tel que f ′(c) = 0.

i) Si M = m. Alors ∀x ∈ [a, b], f(x) = f(a), donc f est constante.
On a alors

∀c ∈]a, b[, f ′(c) = 0.

ii) Si M ̸= m. Puisque f(a) = f(b), l’un au moins des deux extremums (M ou m) est
atteint en un point c différent des extrémités a et b.
On a donc c ∈]a, b[. Comme f est dérivable en c et admet un extremum local en ce
point, d’après le théorème de Fermat 4.5.1 : f ′(c) = 0.

■

Soit f(x) = x2 − 3x + 2 sur I = [1, 2].
f est une fonction polynomiale, donc f ∈ C0([1, 2]) et dérivable sur ]1, 2[.
f(1) = 12 − 3(1) + 2 = 0 et f(2) = 22 − 3(2) + 2 = 0, donc f(1) = f(2).

Par le théorème de Rolle : ∃c ∈]1, 2[, f ′(c) = 0.
On résout f ′(x) = 2x − 3 = 0, ce qui donne c = 3

2 . On vérifie bien que 3
2 ∈]1, 2[.

Exemple 5:Exemple d’application

4.6 Théorème des accroissements finis et applications

4.6.1 Théorème des Accroissements Finis (TAF)

Théorème 4.6.1: Théorème des Accroissements Finis (TAF)
Soit f : [a, b] → R une fonction satisfaisant les conditions suivantes :

i) f est continue sur l’intervalle fermé [a, b],
ii) f est dérivable sur l’intervalle ouvert ]a, b[.

Alors, il existe au moins un réel c ∈]a, b[ tel que :

f ′(c) = f(b) − f(a)
b − a
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a c b

f(a)

f(b)

Sécante

f ′(c) = f(b)−f(a)
b−a

x

f(x)

Figure 4.5 – Illustration du Théorème des Accroissements Finis : existence d’un point c où
la tangente est parallèle à la sécante.

C’est-a-dire il existe au moins un point de la courbe d’abscisse c où la tangente est
parallèle à la sécante reliant les points A(a, f(a)) et B(b, f(b)).

Démonstration. On définit la fonction g sur [a, b] par :

g(x) = f(x) −
[
f(a) + f(b) − f(a)

b − a
(x − a)

]

Cette fonction g représente l’écart vertical entre la courbe de f et la corde (AB).
g est continue sur [a, b] et dérivable sur ]a, b[ car f l’est.
et :

i) g(a) = f(a) − [f(a) + 0] = 0.
ii) g(b) = f(b) − [f(a) + (f(b) − f(a))] = f(b) − f(b) = 0.

On a donc g(a) = g(b) = 0.
D’après le théorème de Rolle 4.5.2, il existe c ∈]a, b[ tel que g′(c) = 0. En dérivant g, on
obtient :

g′(x) = f ′(x) − f(b) − f(a)
b − a

Ainsi, g′(c) = 0 implique directement :

f ′(c) = f(b) − f(a)
b − a

■

4.6.2 Sens de variation et dérivée

Soit f : [a, b] → R une fonction continue sur [a, b] et dérivable sur ]a, b[. Les propriétés
suivantes caractérisent le lien entre le signe de la dérivée et les variations de f :

i) ∀x ∈]a, b[, f ′(x) ≥ 0 ⇐⇒ f est croissante sur [a, b].
ii) ∀x ∈]a, b[, f ′(x) ≤ 0 ⇐⇒ f est décroissante sur [a, b].
iii) ∀x ∈]a, b[, f ′(x) = 0 ⇐⇒ f est constante sur [a, b].

Corollaire 4.6.1: Sens de variation et dérivée
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De plus, concernant la croissance stricte :
iv) ∀x ∈]a, b[, f ′(x) > 0 =⇒ f est strictement croissante sur [a, b].
v) ∀x ∈]a, b[, f ′(x) < 0 =⇒ f est strictement décroissante sur [a, b].

Démonstration. (Cas de la croissance)
L’implication (⇐) découle de la définition du nombre dérivé comme limite du taux d’accrois-
sement (qui est positif si f est croissante).

L’implication (⇒) est une conséquence directe du Théorème des Accroissements Fi-
nis.

Soit (x1, x2) ∈ [a, b]2 tel que x1 < x2. D’après le TAF 4.6.1 appliqué à f sur l’intervalle
[x1, x2], il existe c ∈]x1, x2[ tel que :

f(x2) − f(x1) = f ′(c)(x2 − x1)

* Si f ′(c) ≥ 0, alors comme x2 − x1 > 0, on a f(x2) − f(x1) ≥ 0, soit f(x1) ≤ f(x2).
* Si f ′(c) > 0, alors f(x2) − f(x1) > 0, soit f(x1) < f(x2), ce qui prouve la croissance

stricte.
Le raisonnement est identique pour les autres cas. ■

4.6.3 Inégalité des Accroissements Finis (IAF)

Soit f : [a, b] → R une fonction continue sur [a, b] et dérivable sur ]a, b[. S’il existe un
réel M ≥ 0 tel que pour tout x ∈]a, b[, |f ′(x)| ≤ M , alors :

|f(b) − f(a)| ≤ M |b − a|

Corollaire 4.6.2: Inégalité des Accroissements Finis (IAF)

Démonstration. L’inégalité est immédiate si a = b. Supposons a < b. D’après le Théorème
des Accroissements Finis 4.6.1, il existe un réel c ∈]a, b[ tel que :

f(b) − f(a) = f ′(c)(b − a)

En passant à la valeur absolue :

|f(b) − f(a)| = |f ′(c)| · |b − a|

Or, par hypothèse, nous savons que |f ′(x)| ≤ M pour tout x de l’intervalle, donc en particulier
pour c :

|f ′(c)| ≤ M

On en déduit l’inégalité souhaitée :

|f(b) − f(a)| ≤ M |b − a|

■
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4.7 Applications avancées et Convexité

4.7.1 Règle de L’Hôpital

Théorème 4.7.1: Règle de L’Hôpital
Soient f et g deux fonctions dérivables sur un intervalle I ouvert contenant c (ou ayant
c pour extrémité), telles que g′(x) ̸= 0 pour x ̸= c. Si :

lim
x→c

f(x) = lim
x→c

g(x) = 0 ou lim
x→c

|f(x)| = lim
x→c

|g(x)| = +∞

Et si la limite lim
x→c

f ′(x)
g′(x) existe, alors :

lim
x→c

f(x)
g(x) = lim

x→c

f ′(x)
g′(x)

Calculons lim
x→0

sin(x)
x

. On a f(x) = sin(x) et g(x) = x. Les deux tendent vers 0. f ′(x)
g′(x) =

cos(x)
1 . Comme lim

x→0
cos(x) = 1, alors lim

x→0
sin(x)

x
= 1.

Exemple 6:

Cette règle ne s’applique que pour les formes indéterminées 0
0 ou ∞

∞ . Il faut toujours
vérifier les hypothèses avant de dériver.

Remarque 2:

4.7.2 Convexité et dérivée seconde

Soit f : I → R une fonction. On dit que f est convexe sur I si pour tous x, y ∈ I et
tout λ ∈ [0, 1] :

f(λx + (1 − λ)y) ≤ λf(x) + (1 − λ)f(y)

Géométriquement, cela signifie que la courbe est située en dessous de ses cordes.

Définition 4.7.1: Fonctions convexes et concaves

Soit f une fonction deux fois dérivable sur I.
1. f est convexe sur I si et seulement si f ′′(x) ≥ 0 pour tout x ∈ I.
2. f est concave sur I si et seulement si f ′′(x) ≤ 0 pour tout x ∈ I.

Proposition 4.7.1:
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x λx + (1 − λ)yy

Cf

f(λx + (1 − λ)y)

λf(x) + (1 − λ)f(y)

x

f(x)

Figure 4.6 – Caractérisation d’une fonction convexe par ses cordes.

On appelle point d’inflexion un point où la courbe d’une fonction change de concavité
(elle passe de convexe à concave, ou inversement).

Définition 4.7.2: Point d’inflexion

Théorème 4.7.2:
Si f est deux fois dérivable en c, et si f ′′(c) = 0 en changeant de signe en c, alors le
point (c, f(c)) est un point d’inflexion.

Soit f(x) = x3. f ′(x) = 3x2 et f ′′(x) = 6x. f ′′(x) s’annule en 0 et change de signe
(négatif pour x < 0, positif pour x > 0). Le point (0, 0) est donc un point d’inflexion
pour la fonction cube.

Exemple 7:

En un point d’inflexion, la courbe traverse sa tangente.
Corollaire 4.7.1:
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Point d’inflexion (0, 0)
x

y
f(x) = x3

Tangente en 0

Figure 4.7 – Illustration du point d’inflexion de la fonction f(x) = x3 et de sa tangente à
l’origine.
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