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Symboles et abréviations

Symbole Description / Signification Chapitre
N,Z,Q,R Ensembles des entiers (nat., rel.), rationnels et réels 1
|| Valeur absolue de x 1
sup(E),inf(FE) | Borne supérieure et borne inférieure de 1’ensemble E 1
E(z) ou |z| Partie entiere du réel z 1
(Un)nen Suite numérique 2
lim wu, Limite d’une suite 2
n—+00
v,d, = Pour tout, il existe, implique (Logique) 2
¢ (epsilon) Un réel strictement positif aussi petit que 'on veut 2
f:I—R Fonction réelle définie sur un intervalle [ 3
wll)rgo f(x) Limite de la fonction f quand z tend vers zg 3
fog Composition des fonctions f et ¢ 3
f! Fonction réciproque de f 3
f'(x) Dérivée premiere de f au point x 4
fo@), fo(x) Dérivée a gauche et dérivée a droite 4
™ (z) Dérivée d’ordre n (dérivées successives) 4
TAF / IAF Théoréme / Inégalité des Accroissements Finis 4
1 Dérivée seconde (utilisée pour la convexité) 4




4 Fonctions dérivables

[Chapitre]

4.1 Définition de la Dérivabilité

Soient I un intervalle de R, f : I — R une fonction et zq € I.

Définition 4.1.1: Dérivabilité en un point
On dit que f est dérivable en xj si

(=) = f(zo)

a une limite finie quand x tend vers xg.
Cette limite est notée f’(x¢) et s’appelle la dérivée de f en zy. On a alors :

Flao) = lim f(z) = f(zo) ~ lim f(xo+h) — f(xo)

T—To T — To h—0 h

On dit que f est dérivable sur [ si, quel que soit xy € I, f est dérivable en xy. Dans
ce cas, la fonction f': I — R qui a z associe f'(z) s’appelle I’application dérivée de

f.

WDéﬁnition 4.1.2: Tangente

La droite qui passe par les points distincts (zg, f(z0)) et (x, f(z)) a pour coefficient
directeur :
f(x) = (o)
T — 2o

A la limite, on trouve que le coefficient directeur de la tangente est f’(zq). Une
équation de la tangente au point (g, f(zg)) est donc :

y = f'(z0)(w — o) + f(0)

Dire que f est dérivable en x, c’est dire que la courbe de f peut étre approchée localement
par une droite (voir Figure 4.1).

L’équation de la tangente est donnée par la partie affine du développement :

y(x) = f(wo) + f'(x0)(x — 0)
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FIGURE 4.1 — La tangente (en rouge) réalise la meilleure approximation affine locale de la
courbe Cy au point .

gExemple 1:La fonction carrée

Considérons la fonction f(x) = z* définie sur R. Cherchons la dérivée en un point 7y € R
quelconque.

— lim r3 + 2woh + h* — 2
h—0 h
h—0 h

= }lbii%(%co + h) (Simplification par h)

(Développement)

= 2%0

La fonction est dérivable sur R et f'(x) = 2z.

WDéﬁnition 4.1.3: Proposition

Soit f : I — R une fonction et xg € I. f est dérivable en x si et seulement s’il existe un

réel £ € R (qui est alors égal a f'(xg)) et une fonction ¢ : I — R tels que lim e(z) =0
T—>X0
avec :

f(x) = f(zo) + (x — 20)l + (z — 20)e(T)

WProposition 4.1.1:

< Si f est dérivable en un point zy € I, alors f est continue en z.
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Démonstration. Supposons que f est dérivable en xy. D’apres la Proposition 4.1.3 , nous
pouvons écrire f(z) sous la forme :

f(x) = f(wo) + (x —20) f'(0) + (2 — w0)e()
ou xll}rgo e(z) = 0.

Etudions la limite de f(x) quand z tend vers 2, on a : lim (x—x0)f'(z0) = 0x f'(xg) =0
T—T0

et lim, ., (z — zo)e(z) = 0 x 0 = 0. Par somme de ces limites, on obtient :

lim f(x) = f(zo)

Tr—rx0

Par définition, la fonction f est donc continue en xy. [ |

4.1.1 Opérations sur les fonctions dérivables

,-[ Théoréme 4.1.1: |

J
Soit I =]a,b] un intervalle de R et zg € I. Soient f et g deux fonctions réelles définies

sur I et dérivables en x(. Soit A € R une constante.

Alors, les fonctions f+ g, Af et fg sont dérivables en xg et on a les formules suivantes :
Somme : (f + g)'(z0) = f'(%0) + ¢'(20)
Produit par un scalaire : (\f)'(zg) = Af'(x0)

Produit : (fg) (x0) = f'(x0)g(z0) + f(x0)g (x0)

De plus, si g(zo) # 0, la fonction quotient / est dérivable en xg et :

/ / ) — f'(x0)g(z0) — f(20)g'(z0)
(5) o0 = S

4 Exemple 2:

Soit la fonction h définie sur R* par :

Ici, nous avons f(z) = e* et g(x) = x. Les deux fonctions sont dérivables sur R* et
9(x) #0.

fi(z) =e

g(x)=1

Appliquons la formule du quotient :

ey — F@0() = F@) ()

et x—et-1
e’(x —1)
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4.2 Dérivabilité de la composée et de la réciproque

4.2.1 Dérivée de la fonction composée

,-[ Théoréme 4.2.1: }
Soient f: I — Ret g: f(I) — R deux fonction, / un intervalle ouvert de R et x¢ € I.
Si f dérivable en z et g dérivable en f(xg). Alors, la fonction g o f est dérivable en x
et :

(g0 f) (z0) = g'(f(x0)) x f(x0)

\.

Démonstration. Puisque f est dérivable en zg, on a: f(x) = f(zo) + (x — x0)(f'(x0) + 4 (x))
avec lim g;(z) = 0.
T—x0

De méme, puisque g est dérivable en yo = f(z0), ona: g(y) = g(yo)+(y—40)(9' (o) +24())
avec yh_g} gq(y) = 0.
0

En posant y = f(z) et en substituant le développement de f dans celui de g, on obtient :

9(f (@) = 9(f(x0)) + (f(z) = f(=0)) [9'(f (x0)) + £4(f(2))]

En remplagant (f(x) — f(xo)) par sa forme développée, il vient :

9(f(@)) = g(f(x0)) + (z — o) (f'(z0) + £¢(x)) [g'(f (w0)) + £4(f (z))]

A(z)

Quand z — xo, on a f(z) = f(zo), donc gy(f(x)) = 0 et ef(x) — 0. Ainsi, lim A(z) =

f(xo) - ¢'(f(xg)). D’apres la Définition et Proposition 4.1.3, cela prouve que g o f est
dérivable et donne la formule de la dérivée. |

4.2.2 Dérivée de la fonction réciproque

,_[ Théoréme 4.2.2: Théoreme de la bijection et sa dérivée ]

Soit f : I — f(I) une bijection continue. Si f est dérivable en xy et f'(x¢) # 0, alors
la fonction réciproque f~! est dérivable en yo = f(z) et :

1
f'(xo)

(f ) (o) =

.

Démonstration. Posons y = f(x) et yo = f(xo). Puisque f est une bijection continue, y — yo
équivaut a z — xo. Considérons le taux d’accroissement de f~! en yq :

[y =) . w—wo 1
)
Comme f est dérivable en z;, le dénominateur tend vers f’(zg) quand = — z,. Puisque
"(xo 0, la limite du quotient existe et vaut ++—. Ainsi, f~' est dérivable en . |
f'(zo)
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%f;Remarque 1:
En utilisant la régle de la composée sur Uidentité f(f~!(y)) = y, on retrouve la formule :

YUy =1 = ()= )

4 Exemple 3:Calcul de la dérivée de /z

La fonction f(z) = x? est continue et strictement croissante sur I =]0, +-o0]. Elle réalise
une bijection vers J =0, +-00[. Sa réciproque est f~!(y) = /3.

On sait que f'(z) = 2z. Comme x > 0, f'(x) # 0. Appliquons la formule pour
trouver la dérivée de /y en un point ypo :

1
/ pum— pu—
(VI ) = s e = Vi
1 1
/ —_ —
On retrouve bien la formule connue : (y/z) = ﬁ

WProposition 4.2.1: Equation de la tangente de [~

Soit f une bijection dérivable en xq telle que f'(x) # 0. L’équation de la tangente a la
courbe de la fonction réciproque f~! au point yo = f(xg) s’écrit :

1 _
T = m(y — o) + [ (o)
Démonstration. On a ]
—1y\/ o
(f ) (y()) - f/(x[))

En applique donc la définition de équation de la tangente et on obtien alors

xzféww—y@+flw@

4.3 Dérivabilité a gauche et a droite

Lorsque la limite du taux d’accroissement n’est pas la méme selon qu’on s’approche de
xo par valeurs inférieures ou supérieures, on définit les dérivées latérales.

WDéﬁnition 4.3.1:

Soit f une fonction définie sur un intervalle I et z¢ € I.

* Dérivabilité a droite : f est dérivable a droite en x; si la limite suivante existe

et est finie :
i @) = ()

m—m(')" T — Zo

= fa(zo)
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On appelle f)(x¢) le nombre dérivé a droite.
* Dérivabilité a gauche : f est dérivable a gauche en x si la limite suivante existe

et est finie :
L (@) = fo)
B=g, r — X

= f4(o)

On appelle f;(zo) le nombre dérivé a gauche.

Théoréme 4.3.1: Condition de dérivabilité }

Une fonction f est dérivable en xq si et seulement si :

i) Elle est dérivable a droite et a gauche en xg.

ii) Les nombres dérivés sont égaux : fj(zo) = f, (o).

Si f est dérivable a gauche et a droite mais que f/ (o) # fj(20), alors la fonction n’est
pas dérivable en x.

La courbe admet deux demi-tangentes distinctes au point My(xg, f(xo)).

On dit que le point Mj est un point anguleux.

>
>

y = ||

Pente f/(0) = —1 Pente f}(0) =1
9 d

8

Point anguleux (0,0)
Ici f;(0) # f3(0) = Non dérivable en 0

FIGURE 4.2 — [llustration d’un point anguleux avec la fonction valeur absolue. Les pentes a
gauche et a droite ne s’alignent pas.

4 Exemple 4:

La fonction f(z) = || est continue en 0.

— A droite (z > 0), f(z) =z, donc f4(0) = 1.

— A gauche (z < 0), f(z) = —x, donc f3(0) = —1.
Comme 1 # —1, f n’est pas dérivable en 0.

4.4 Dérivées successives
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W Définition 4.4.1: Dérivées successives
Soit f une fonction définie sur un intervalle /. On définit les dérivées successives par
récurrence. La dérivée d’ordre 0 de f, notée f(©, est la fonction f elle-méme. Pour tout
entier naturel n, si la dérivée d’ordre n, notée £, est définie et dérivable sur I, on
appelle dérivée d’ordre n + 1 la dérivée de f™. On la note f*+1.

Une fonction est dite de classe C™ sur [ si elle est n fois dérivable et que sa dérivée
d’ordre n est continue sur I. Si elle est dérivable a tout ordre, on dit qu’elle est de classe
C.

,-[ Théoreme 4.4.1: Formule de Leibniz ] |
Soient f et g deux fonctions de classe C™ sur un intervalle I. La fonction produit f - g
est également de classe C™ sur I, et sa dérivée d’ordre n est donnée par la formule

suivante : .
n
(f - g)(n) _ E : (k) f(k)g(n—k)

k=0

k

N ! 7 . . . . .
ol (") = m représente les coefficients binomiaux (combinaisons).

\.

Démonstration. La démonstration s’effectue par récurrence sur 'entier n. Pour n = 1, on
retrouve la formule classique de la dérivée d'un produit : (fg) = f'g + f¢'. En supposant la
propriété vraie au rang n, on dérive I'expression de la somme. L’utilisation de la relation de

Pascal sur les coefficients binomiaux, (Z) + (kfl) = ("Zl), permet de regrouper les termes et

d’obtenir la formule au rang n + 1. [ |

4.5 Extremum local et Théoréme de Rolle
4.5.1 Extremum local

Définition 4.5.1: Extremum local
Soit f: I — R et ¢ un point intérieur a /.

i) f admet un maximum local en ¢ si: 30 > 0,V € INjc — d, ¢+ d[, f(z) < f(c)
ii) f admet un minimum local en ¢ si: 30 > 0,Vx € IN|c — §,¢+ 4§, f(z) > f(c)

Théoréme 4.5.1: Condition nécessaire d’extremum (Fermat) ]

Soit f :Ja,b|— R une fonction dérivable en x €|a, b.

Si g est un extremum local de f, alors f'(zo) =0

Démonstration. Soit f dérivable sur un ouvert I et xy € I un point ou f admet un maximum
local. Alors il existe un voisinage J C I de xg tel que pour tout = € J, f(z) < f(xo). Soit 7
le Taux d’accroissement définie par :

f(@o+h) — f(xo)

T(h) = n

pour h petit .
Le numérateur f(xo+h)— f(zo) est toujours négatif ou nul par définition du maximum.
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/()

Max local

'+ Min local
20

| |
1 | | 1
+

Cmin — (5 Crmin + 5 Cmaxz — 5Cmaa3 + 6

FIGURE 4.3 — Représentation graphique d’'un maximum et d’un minimum local avec leurs
voisinages d’étude associés.
i) A droite (h > 0) : Le quotient est négatif : 7(h) < 0. En passant & la limite
! = li h) <0
fiwo) = lim 7(h) <
ii) A gauche (h < 0) : Le dénominateur change de signe, donc le quotient est positif :
7(h) > 0. En passant a la limite :

f'(zo) = lim 7(h) >0

h—0~—
La fonction f étant dérivable en x, les limites a gauche et a droite sont égales :
0< f'(r9) <0 = f'(x0) =0

(Le raisonnement est analogue pour un minimum local en inversant le signe du
numérateur.)

4.5.2 Théoréme de Rolle

,-[ Théoréme 4.5.2: Théoréeme de Rolle |

J
Soit f : [a,b] — R vérifiant les trois hypotheéses suivantes :

i) f€C%a,b]) (continuité sur le fermé)
ii) f est dérivable sur |a, b|
i) f(a) = £(0)
Alors : 3e €]a, b, f'(¢) =0

.

Démonstration. D’apres le théoréme des bornes atteintes (Weierstrass), comme f € C°([a, b)),
il existe x,,, zy € [a,b] tels que :

flam) =m = min f(z) et flza)=M = max f(z)
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f(x)
fe)=0

b

|
|
|
|
|
|
1
1
}
a

FIGURE 4.4 — Théoreme de Rolle : la condition f(a) = f(b) implique 'existence d'un point
c tel que f'(c) =0.

i) Si M =m. Alors Vz € [a,b], f(z) = f(a), donc f est constante.
On a alors
Ve €la, b, f'(c) = 0.

ii) Si M # m. Puisque f(a) = f(b), I'un au moins des deux extremums (M ou m) est
atteint en un point ¢ différent des extrémités a et b.
On a donc ¢ €]a,b]. Comme f est dérivable en ¢ et admet un extremum local en ce
point, d’apres le théoréeme de Fermat 4.5.1 : f'(¢) = 0.

gExemple 5:Exemple d’application
Soit f(z) = 2? — 3z + 2 sur [ = [1,2].
f est une fonction polynomiale, donc f € C°([1,2]) et dérivable sur |1, 2].
F1)=12—3(1)+2=0ct f(2) =22 —3(2) + 2 =0, donc f(1) = £(2).
Par le théoreme de Rolle : e €]1, 2], f'(c) = 0.

On résout f'(z) = 2z — 3 =0, ce qui donne ¢ = 2. On vérifie bien que 3 €]1,2].

4.6 Théoreme des accroissements finis et applications

4.6.1 Théoréme des Accroissements Finis (TAF)

'_[ Théoréme 4.6.1: Théoréme des Accroissements Finis (TAF) ]'

Soit f : [a,b] — R une fonction satisfaisant les conditions suivantes :

i) f est continue sur l'intervalle fermé [a, 0],
ii) f est dérivable sur l'intervalle ouvert |a, b|.
Alors, il existe au moins un réel ¢ €]a, b[ tel que :

f(b) = f(a)

7o) = T2 =1
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FIGURE 4.5 — Illustration du Théoreme des Accroissements Finis : existence d’un point ¢ ou
la tangente est parallele a la sécante.

C’est-a-dire il existe au moins un point de la courbe d’abscisse ¢ ou la tangente est
parallele a la sécante reliant les points A(a, f(a)) et B(b, f(b)).

Démonstration. On définit la fonction g sur [a, b] par :

o(a) = 1) |f() + T D, )

Cette fonction g représente 1’écart vertical entre la courbe de f et la corde (AB).
g est continue sur [a, b] et dérivable sur |a, b[ car f lest.
et :
i) g(a) = f(a) = [f(a) + 0] = 0.
ii) g(b) = f(b) = [f(a) + (F(b) = f(a))] = f(b) = f(b) = 0.

On a donc g(a) = g(b) = 0.
D’apres le théoreme de Rolle 4.5.2; il existe ¢ €]a,b[ tel que ¢'(¢) = 0. En dérivant g, on

obtient :
g = f(a) - 1O
Ainsi, ¢'(¢) = 0 implique directement :
: f(b) = f(a)
fio=10=1

4.6.2 Sens de variation et dérivée

Corollaire 4.6.1: Sens de variation et dérivée
Soit f : [a,b] — R une fonction continue sur [a, b] et dérivable sur |a, b|. Les propriétés
suivantes caractérisent le lien entre le signe de la dérivée et les variations de f :
i) Vo €la, b, f'(z) >0 <= [ est croissante sur [a, b].
ii) Va €]a,b], f'(z) <0 <= f est décroissante sur [a, b].
iii) Vo €la,b], f'(r) =0 <= f est constante sur [a, b].
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De plus, concernant la croissance stricte :
iv) Vz €la,b], f'(x) >0 = f est strictement croissante sur |[a, b].
v) VY €la,b], f'(r) <0 = f est strictement décroissante sur [a, b].

Démonstration. (Cas de la croissance)
L’implication (<) découle de la définition du nombre dérivé comme limite du taux d’accrois-
sement (qui est positif si f est croissante).

L’implication (=) est une conséquence directe du Théoréme des Accroissements Fi-
nis.

Soit (z1,72) € [a,b]? tel que Ty < 5. D’apres le TAF 4.6.1 appliqué a f sur lintervalle
(21, x2), il existe ¢ €]y, 22 tel que :

f@e) = fx1) = f'(e)(x2 — 1)

* Si f'(¢) > 0, alors comme x5 —x1 > 0, on a f(xg) — f(x1) > 0, soit f(x1) < f(z2).

*Si f'(e) > 0, alors f(x2) — f(z1) > 0, soit f(z1) < f(xs), ce qui prouve la croissance
stricte.

Le raisonnement est identique pour les autres cas. [ |

4.6.3 Inégalité des Accroissements Finis (IAF)

Corollaire 4.6.2: Inégalité des Accroissements Finis (IAF)

Soit f : [a,b] — R une fonction continue sur [a, b] et dérivable sur |a, b[. S'il existe un
réel M > 0 tel que pour tout = €|a, b, |f'(x)| < M, alors :

£ (b) = f(a)] < M|b—al

Démonstration. L’inégalité est immédiate si a = b. Supposons a < b. D’apres le Théoreme
des Accroissements Finis 4.6.1, il existe un réel ¢ €]a, b| tel que :

f() = fa) = f'(c)(b—a)

En passant a la valeur absolue :

1£(6) = fla)l = [f'(c)] - b — al

Or, par hypothese, nous savons que |f'(x)| < M pour tout = de 'intervalle, donc en particulier

pour ¢ :
[fi(e)l <M

On en déduit I'inégalité souhaitée :

£ (b) = f(a)] < MIb—al
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4.7 Applications avancées et Convexité

4.7.1 Regle de L’Hopital

,_[ Théoréme 4.7.1: Regle de L’Hopital ]

Soient f et g deux fonctions dérivables sur un intervalle I ouvert contenant ¢ (ou ayant
¢ pour extrémité), telles que ¢'(x) # 0 pour = # ¢. Si :

lim /(o) = lim g(a) =0 ou  Jim |(2)] = lim |g(@)] = +o0

Tr—cC r—cC

Et si la limite lim £&) existe, alors
z—c 9'(z)

lim f@) = lim f'(z)

—~cg(x) eeg'(x)

Exemple 6:
4

Calculons hr% sin@) (O g f(z) = sin(z) et g(z) = x. Les deux tendent vers 0. f; :ég =
% Comme lim cos(z) = 1, alors lim Sm( b= 1.
z—0 —0

%f;Remarque 2:

Cette regle ne s’applique que pour les formes indéterminées % ou 2. Il faut toujours
vérifier les hypotheses avant de dériver.

4.7.2 Convexité et dérivée seconde

ﬁ Définition 4.7.1: Fonctions convexes et concaves

Soit f : I — R une fonction. On dit que f est convexe sur [ si pour tous x,y € I et
tout A € [0,1] :

FOz+ (1 =XNy) <Af(z)+ (1 =N F(y)

Géométriquement, cela signifie que la courbe est située en dessous de ses cordes.

W’Proposition 4.7.1:

Soit f une fonction deux fois dérivable sur I.
1. f est convexe sur [ si et seulement si f”(z) > 0 pour tout z € I.

2. f est concave sur I si et seulement si f”(x) < 0 pour tout z € I.
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FI1GURE 4.6 — Caractérisation d’une fonction convexe par ses cordes.

cf Définition 4.7.2: Point d’inflexion

On appelle point d’inflexion un point ou la courbe d’une fonction change de concavité
(elle passe de convexe a concave, ou inversement).

Théoréme 4.7.2: |

J
Si f est deux fois dérivable en ¢, et si f”(c) = 0 en changeant de signe en ¢, alors le

point (¢, f(c)) est un point d’inflexion.

A Exemple T7:
Soit f(z) = 23, f'(x) = 322 et f"(x) = 6. f’(z) s’annule en 0 et change de signe
(négatif pour =z < 0, positif pour x > 0). Le point (0,0) est donc un point d’inflexion
pour la fonction cube.

W Corollaire 4.7.1:

< En un point d’inflexion, la courbe traverse sa tangente.
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FIGURE 4.7 — Illustration du point d’inflexion de la fonction f(z) = z® et de sa tangente a
I’origine.
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