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Introduction

Pourquoi réapprendre l’intégration ?
Au lycée, l’intégrale

∫ b
a f(x)dx est souvent perçue comme un simple outil de calcul, l’opération

inverse de la dérivée. Mais cette vision mécanique cache la véritable nature du problème :
comment mesurer l’aire d’une forme complexe ?

Ce cours reprend tout à zéro avec une approche visuelle et géométrique. Nous allons suivre
l’idée géniale de Riemann et Darboux : pour comprendre le complexe, il faut l’encadrer par du
simple. Concrètement, nous allons ”coincer” nos courbes entre des empilements de rectangles
(fonctions en escalier).

Cette construction rigoureuse est le socle de l’Analyse Réelle. Elle nous permettra de vali-
der vos méthodes de calcul actuelles, mais aussi de toucher du doigt leurs limites, notamment
lorsqu’il s’agira de manipuler des sommes infinies ou des limites d’intégrales, préparant ainsi
le terrain pour les mathématiques avancées de la Licence 3.
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1 Intégrales des fonctions en escalier

1.1 Fonctions en escalier

Soit [a, b] un intervalle fermé et borné de R (avec a < b).
1. On appelle subdivision de [a, b] toute suite finie strictement croissante S =

(ti)0≤i≤n de points de [a, b] telle que :

a = t0 < t1 < t2 < · · · < tn−1 < tn = b

2. On appelle pas de la subdivision S, noté δ(S) (ou parfois ∥S∥), la plus grande
distance entre deux points consécutifs de la subdivision :

δ(S) = max
0≤i≤n−1

(ti+1 − ti)

Définition 1.1.1:Subdivision et Pas

x
t0 = a t1 t2

. . .
tn−1 tn = b

t2 − t1

Bien que la théorie soit construite sur un intervalle général [a, b], il est très fréquent
dans les exemples pratiques et les exercices de choisir l’intervalle unitaire [0, 1]. Ce
choix permet de simplifier considérablement les écritures et les calculs sans perdre la
généralité des propriétés démontrées.

Remarque 1:

Considérons l’intervalle [0, 1]. La suite finie S1 = (0, 1
3 ,

2
3 , 1) est une subdivision de

pas δ(S1) = 1
3 . Les points ne sont pas obligés d’être équidistants, par exemple S2 =

(0, 0.1, 0.9, 1) est aussi une subdivision valide.

Exemple 1:Subdivision quelconque sur [0,1]

2



CHAPITRE 1. INTÉGRALES DES FONCTIONS EN ESCALIER 3

C’est l’exemple le plus important pour les calculs. Pour un intervalle [a, b] et un entier
n ≥ 1, la subdivision régulière (ou équidistante) de pas b−a

n
est définie par les points :

tk = a+ k · b− a

n
, pour k ∈ {0, 1, . . . , n}.

Par exemple, si n = 4 sur [0, 1], on obtient S = (0, 1
4 ,

1
2 ,

3
4 , 1).

Exemple 2:Subdivision régulière

Soient S et S ′ deux subdivisions d’un même intervalle [a, b]. On dit que la subdivision
S ′ est plus fine que la subdivision S si tous les points de S sont aussi des points de S ′.
Autrement dit :

S ⊂ S ′

Cela signifie que S ′ est obtenue en ajoutant de nouveaux points à S.

Définition 1.1.2:Subdivision plus fine

Illustration du raffinement (S ⊂ S ′)

xS
a t1 t2 b

xS ′

t′
j t′

j t′
j

a b

• Points de S • Points ajoutés dans S′

Soient S1 et S2 deux subdivisions quelconques d’un même intervalle [a, b]. Si l’on considère
la subdivision S3 constituée de la réunion (l’union) de tous les points de S1 et de S2 :

S3 = S1 ∪ S2

Alors, par construction, S1 ⊂ S3 et S2 ⊂ S3.
Conséquence : La subdivision S3 est plus fine à la fois que S1 et que S2.
Note : Gardez cette propriété en mémoire. Elle sera systématiquement utilisée dans

les démonstrations à venir, notamment pour comparer les sommes de Darboux calculées
sur des découpages différents.

Remarque 2:Point méthode fondamental

Pour construire l’intégrale, nous allons utiliser des fonctions simples : les fonctions constantes
par morceaux. Pour les définir proprement, introduisons d’abord un outil de notation très
pratique.

©Mohamed Najib LAATABI 3
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CHAPITRE 1. INTÉGRALES DES FONCTIONS EN ESCALIER 4

Soit E un ensemble (dans notre cas, ce sera souvent un intervalle de R) et A une partie
de E. On appelle fonction indicatrice de A, notée 1A (ou parfois χA), la fonction
définie sur E par :

1A(x) =
1 si x ∈ A

0 si x /∈ A

Intuition : Cette fonction ”indique” la présence de x dans l’ensemble A (elle vaut 1) ou
son absence (elle vaut 0).

Définition 1.1.3:Fonction indicatrice

Une fonction en escalier est une fonction qui reste constante sur les intervalles ouverts
d’une subdivision.

Soit [a, b] un segment et S = (t0, t1, . . . , tn) une subdivision de [a, b]. Une fonction
φ : [a, b] → R est dite en escalier subordonnée à la subdivision S (ou adaptée à
S) si elle est constante sur chaque intervalle ouvert ]ti, ti+1[.

Autrement dit, pour tout i ∈ {0, . . . , n−1}, il existe une constante ci ∈ R telle que :

∀x ∈]ti, ti+1[, φ(x) = ci

Écriture algébrique : En utilisant les fonctions indicatrices, on peut écrire φ (sauf
éventuellement aux points de la subdivision) sous la forme :

φ(x) =
n−1∑
i=0

ci · 1]ti,ti+1[(x)

Définition 1.1.4:Fonction en escalier

onsidérons la fonction partie entière, notée E(x) ou ⌊x⌋, sur l’intervalle [0, 3]. La fonction
est définie par E(x) = k pour tout x ∈ [k, k + 1[.

C’est une fonction en escalier subordonnée à la subdivision S = (0, 1, 2, 3). En effet :
— Sur ]0, 1[, la fonction est constante et vaut 0.
— Sur ]1, 2[, la fonction est constante et vaut 1.
— Sur ]2, 3[, la fonction est constante et vaut 2.

On peut l’écrire comme combinaison linéaire d’indicatrices (aux points de discontinuité
près) :

f(x) = 0 · 1]0,1[(x) + 1 · 1]1,2[(x) + 2 · 1]2,3[(x)

Exemple 3:C

©Mohamed Najib LAATABI 4
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a φ(t)dt
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L’ensemble des fonctions en escalier possède une structure algébrique stable, ce qui est fon-
damental pour la linéarité de l’intégrale que nous définirons plus tard.

On note E([a, b]) l’ensemble des fonctions en escalier sur [a, b]. E([a, b]) est un sous-
espace vectoriel de l’espace vectoriel des fonctions de [a, b] dans R.

Autrement dit :
1. La fonction nulle est une fonction en escalier.
2. Si φ et ψ sont deux fonctions en escalier et λ, µ ∈ R, alors la combinaison linéaire
λφ+ µψ est encore une fonction en escalier.

Proposition 1.1.1:

Démonstration. Élément neutre. La fonction nulle est constante sur ]a, b[. Elle est donc en
escalier, car elle est adaptée à la subdivision triviale S = {a, b}.

Stabilité par combinaison linéaire. Soient φ, ψ ∈ E([a, b]) deux fonctions en escalier
et (λ, µ) ∈ R2 deux scalaires. Par définition, il existe une subdivision S1 adaptée à φ et une
subdivision S2 adaptée à ψ.

Le problème est que S1 et S2 ne sont pas forcément identiques. Pour pouvoir sommer
les fonctions, nous devons nous placer sur une subdivision commune. Considérons alors la
subdivision réunion :

S3 = S1 ∪ S2

D’après la remarque précédente, cette subdivision S3 est plus fine à la fois que S1 et que S2.
Par conséquent, la fonction φ est constante sur chaque intervalle ouvert de S3 (puisque S3
raffine S1) et, de la même manière, la fonction ψ est également constante sur chaque intervalle
ouvert de S3 (puisque S3 raffine S2).

Soit maintenant ]tk, tk+1[ un intervalle ouvert quelconque de la subdivision S3. Sur cet
intervalle, on a :

φ(x) = ck et ψ(x) = dk

La combinaison linéaire vaut alors :

(λφ+ µψ)(x) = λck + µdk = Constantek

La fonction λφ+ µψ est donc constante sur tous les intervalles ouverts de la subdivision S3.
Elle est bien une fonction en escalier. □ ■

©Mohamed Najib LAATABI 5
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1.2 Intégrale des fonctions en escalier
Nous pouvons maintenant définir l’intégrale pour ces fonctions simples. L’idée est natu-

relle : l’intégrale est la somme des aires des rectangles formés par l’escalier.

Soit φ une fonction en escalier sur [a, b]. Soit S = (t0, t1, . . . , tn) une subdivision adaptée
à φ. Pour tout i ∈ {0, . . . , n−1}, on note ci la valeur constante prise par φ sur l’intervalle
ouvert ]ti, ti+1[.

On appelle intégrale de Riemann de la fonction en escalier φ sur [a, b] le nombre
réel noté I(φ) ou

∫ b
a φ(t) dt, défini par :

∫ b

a
φ(t) dt =

n−1∑
i=0

ci(ti+1 − ti)

Définition 1.2.1:

Cette définition appelle une précision importante. Une fonction en escalier peut être as-
sociée à une infinité de subdivisions différentes (en rajoutant des points inutilement). On
démontre (c’est un résultat d’indépendance) que la valeur de la somme ne dépend pas du
choix de la subdivision adaptée S. L’intégrale est donc bien définie de manière unique pour
la fonction φ.

t

y

t0 = a t1

t2

t3 t4 = b

c0(t1 − t0)

c1(t2 − t1)

c2(t3 − t2)

c3(t4 − t3)

Aire positive (ci > 0)
Aire négative (ci < 0)

L’intégrale correspond à l’aire algébrique comprise entre la courbe de φ et l’axe des
abscisses. Les rectangles situés sous l’axe (où ci < 0) comptent négativement dans la
somme totale.

Remarque 3:

1.3 Propriétés de l’intégrale des fonctions en escalier
L’application qui à une fonction en escalier associe son intégrale possède des propriétés

algébriques et d’ordre remarquables. Ce sont ces mêmes propriétés que l’on cherchera à
étendre plus tard à toutes les fonctions intégrables.

©Mohamed Najib LAATABI 6
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Soient φ et ψ deux fonctions en escalier sur [a, b] et soient λ, µ deux réels. Alors :∫ b

a
(λφ+ µψ)(t) dt = λ

∫ b

a
φ(t) dt+ µ

∫ b

a
ψ(t) dt

Proposition 1.3.1: Linéarité

Démonstration. Comme nous l’avons vu pour la structure d’espace vectoriel, le point clé
est de travailler sur une subdivision commune. Soient S1 une subdivision adaptée à φ et S2
adaptée à ψ. Considérons S = S1 ∪S2 = (ti)0≤i≤n, qui est plus fine que les deux précédentes.

Sur chaque intervalle ouvert ]ti, ti+1[, φ prend une valeur constante ci et ψ prend une
valeur constante di. La fonction combinaison linéaire λφ+µψ prend donc la valeur constante
λci + µdi.

Par définition de l’intégrale :
∫ b

a
(λφ+ µψ) =

n−1∑
i=0

(λci + µdi)(ti+1 − ti)

= λ
n−1∑
i=0

ci(ti+1 − ti) + µ
n−1∑
i=0

di(ti+1 − ti)

= λ
∫ b

a
φ+ µ

∫ b

a
ψ

■

L’intégrale respecte l’ordre naturel des fonctions : une fonction ”plus grande” a une intégrale
”plus grande”.

1. Positivité : Si φ est une fonction en escalier positive sur [a, b] (c’est-à-dire
∀x, φ(x) ≥ 0), alors : ∫ b

a
φ(t) dt ≥ 0

2. Croissance : Si φ et ψ sont deux fonctions en escalier telles que φ ≤ ψ sur [a, b],
alors : ∫ b

a
φ(t) dt ≤

∫ b

a
ψ(t) dt

Proposition 1.3.2: Positivité et Croissance

Démonstration. Pour la positivité, considérons une subdivision adaptée à φ. Sur chaque
intervalle, φ vaut ci ≥ 0. Comme les longueurs (ti+1 − ti) sont toujours positives, la somme∑
ci(ti+1 − ti) est une somme de termes positifs, donc positive.
Pour la croissance, on applique la propriété de positivité à la fonction différence ψ − φ.

Comme ψ ≥ φ, on a ψ − φ ≥ 0. Par linéarité :∫
(ψ − φ) =

∫
ψ −

∫
φ ≥ 0 =⇒

∫
ψ ≥

∫
φ

■

©Mohamed Najib LAATABI 7
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a φ(t)dt
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Illustration de la croissance (φ ≤ ψ)

t
φ

ψ

a b

L’aire sous φ (bleu)
est incluse dans
l’aire sous ψ (rouge).

Cette propriété concerne le découpage de l’intervalle d’intégration.

Soit φ ∈ E([a, b]) et soit c ∈]a, b[. Alors :∫ b

a
φ(t) dt =

∫ c

a
φ(t) dt+

∫ b

c
φ(t) dt

Proposition 1.3.3: Relation de Chasles

Démonstration. Soit S une subdivision adaptée à φ. Si le point c n’est pas dans S, on l’ajoute
pour obtenir une subdivision S ′ = S∪{c}. S ′ est plus fine, donc on peut l’utiliser pour calculer
l’intégrale.

La somme totale des rectangles sur [a, b] se scinde alors naturellement en deux paquets :
ceux situés avant c (qui donnent

∫ c
a φ) et ceux situés après c (qui donnent

∫ b
c φ). ■

Pour majorer une intégrale, nous avons besoin de manipuler la valeur absolue de la fonction.

Soit φ une fonction en escalier sur [a, b].
1. La fonction |φ|, définie par x 7→ |φ(x)|, est aussi une fonction en escalier sur [a, b].
2. On a l’inégalité triangulaire pour les intégrales :∣∣∣∣∣

∫ b

a
φ(t) dt

∣∣∣∣∣ ≤
∫ b

a
|φ(t)| dt

3. En notant ∥φ∥∞ = supx∈[a,b] |φ(x)| la borne supérieure de |φ|, on a la majoration
fondamentale : ∣∣∣∣∣

∫ b

a
φ(t) dt

∣∣∣∣∣ ≤ (b− a) · sup
x∈[a,b]

|φ(x)|

Proposition 1.3.4: Valeur absolue et Majoration

Démonstration. 1. Soit S = (ti) une subdivision adaptée à φ. Sur chaque intervalle ]ti, ti+1[,
φ est constante égale à ci. Donc |φ| est constante égale à |ci|. Elle est donc bien en escalier
sur la même subdivision.

2 et 3. Revenons à la définition de l’intégrale sous forme de somme.
∫ b

a
φ(t) dt =

n−1∑
i=0

ci(ti+1 − ti)

©Mohamed Najib LAATABI 8
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Prenons la valeur absolue de cette quantité. En utilisant l’inégalité triangulaire classique pour
les sommes finies (| ∑

xk| ≤ ∑ |xk|), et sachant que les longueurs (ti+1 − ti) sont positives :∣∣∣∣∣
∫ b

a
φ(t) dt

∣∣∣∣∣ =
∣∣∣∣∣
n−1∑
i=0

ci(ti+1 − ti)
∣∣∣∣∣

≤
n−1∑
i=0

|ci|(ti+1 − ti) (=
∫ b

a
|φ(t)| dt)

Cela démontre le point 2. Pour le point 3, remarquons que pour tout indice i, la valeur |ci|
est inférieure ou égale au maximum global de la fonction sur le segment, soit M = sup[a,b] |φ|.

Donc :
n−1∑
i=0

|ci|(ti+1 − ti) ≤
n−1∑
i=0

M(ti+1 − ti)

= M
n−1∑
i=0

(ti+1 − ti)

= M(b− a)

(Car la somme des longueurs des sous-intervalles vaut la longueur totale b− a.). ■

−M

x

y

a b

Longueur : (b− a)

M

Légende

Aire grise : (b − a) × M

Aire hachurée :
∫ b

a

φ

On observe que :

∣∣∣∣∣
∫ b

a

φ

∣∣∣∣∣ ≤ (b − a) sup |φ|

1.4 Sommes de Darboux et de Riemann
Pour définir l’intégrale d’une fonction bornée quelconque φ, nous allons l’encadrer par des

fonctions en escalier. Cela nous amène à définir deux quantités : l’une approchant l’aire par
défaut (Darboux inférieur), l’autre par excès (Darboux supérieur).

1.4.1 Sommes de Darboux
Soit φ : [a, b] → R une fonction bornée (pas nécessairement continue pour l’instant).

Soit S = (x0, x1, . . . , xn) une subdivision de [a, b].
Sur chaque intervalle [xi, xi+1], la fonction φ étant bornée, elle admet une borne inférieure

et une borne supérieure finies. On note :

mi = inf
t∈[xi,xi+1]

φ(t) et Mi = sup
t∈[xi,xi+1]

φ(t)

©Mohamed Najib LAATABI 9
∫ b

a φ(t)dt
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On appelle :
Somme de Darboux inférieure σ(φ, S) la somme des aires des rectangles basés
sur les infimums :

σ(φ, S) =
n−1∑
i=0

mi(xi+1 − xi)

Somme de Darboux supérieure Σ(φ, S) la somme des aires des rectangles
basés sur les supremums :

Σ(φ, S) =
n−1∑
i=0

Mi(xi+1 − xi)

Définition 1.4.1:Sommes de Darboux

Intuitivement, σ(φ, S) est l’intégrale de la ”plus grande fonction en escalier” située sous
φ, et Σ(φ, S) est l’intégrale de la ”plus petite fonction en escalier” située au-dessus de φ.

−2 2

0.5

1

x

y

Somme Inférieure (sn)

−2 2

0.5

1

x

y

Somme Supérieure (Sn)

a : Somme de Darboux inférieure
pour la fonction f(x) = e−x2 sur
l’intervalle [−3, 3] avec n = 15.

b : Somme de Darboux supérieure
pour la fonction f(x) = e−x2 sur
l’intervalle [−3, 3] avec n = 15.

1.4.2 Sommes de Riemann
Bernhard Riemann a proposé une approche légèrement différente. Au lieu de chercher le

min ou le max exact sur l’intervalle (qui peuvent être difficiles à calculer), on choisit un point
au hasard dans chaque intervalle.

On appelle subdivision pointée la donnée d’une subdivision S = (xi) et d’une famille
de points ξ = (ξ0, . . . , ξn−1) tels que pour tout i, ξi ∈ [xi, xi+1].

La somme de Riemann associée à ce choix est :

R(φ, S, ξ) =
n−1∑
i=0

φ(ξi)(xi+1 − xi)

Définition 1.4.2:Somme de Riemann

©Mohamed Najib LAATABI 10
∫ b

a φ(t)dt
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−3 −2 −1 1 2 3

0.2

0.4

0.6

0.8

1

x

y

Somme de Riemann (points aléatoires ci)

Somme de Riemann de f(x) = e−x2

sur [−3, 3] avec n = 15 et des points
d’évaluation ci choisis aléatoirement.

Pour tout choix de points ξi, on a l’encadrement fondamental :

σ(φ, S) ≤ R(φ, S, ξ) ≤ Σ(φ, S)

L’intégrale sera définie lorsque l’écart entre la somme inférieure et la somme supérieure
deviendra arbitrairement petit.

Remarque 4:Lien fondamental

−3 3

0.5

1

x

y

Somme Inférieure (σn)
Aire ≈ 1.58

−3 3

0.5

1

x

y

Somme de Riemann (Rn)
σn ≤ Rn ≤ Σn

−3 3

0.5

1

x

y

Somme Supérieure (Σn)
Aire ≈ 1.98

Comparaison des Sommes
La somme de Riemann Rn (milieu) est toujours encadrée par

la somme inférieure σn (gauche) et la somme supérieure Σn (droite).

©Mohamed Najib LAATABI 11
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Considérons φ(x) = x2 sur [0, 1] avec la subdivision régulière xi = i
n
. La fonction est

croissante, donc sur chaque intervalle [ i
n
, i+1

n
] :

Le minimum est atteint à gauche : mi = φ(xi) = ( i
n
)2.

Le maximum est atteint à droite : Mi = φ(xi+1) = ( i+1
n

)2.
La somme de Darboux inférieure vaut :

σn =
n−1∑
i=0

(
i

n

)2
· 1
n

= 1
n3

n−1∑
i=0

i2

La somme de Darboux supérieure vaut :

Σn =
n−1∑
i=0

(
i+ 1
n

)2
· 1
n

= 1
n3

n∑
k=1

k2

Un calcul de limite (utilisant la formule de la somme des carrés) montrerait que les deux
convergent vers 1

3 .

Exemple 4:

Soit φ : [a, b] → R une fonction bornée. Soit S = {x0, x1, . . . , xn} une subdivision
uniforme de [a, b] telle que xk = a+ k b−a

n
.

La somme de Riemann de φ associée à S et aux points marqués ck ∈ [xk, xk+1] est
donnée par :

Rn =
n−1∑
k=0

φ(ck)δ(S) = b− a

n

n−1∑
k=0

φ(ck)

où δ(S) = b−a
n

représente la largeur de chaque sous-intervalle.

Définition 1.4.3:(Somme de Riemann Uniforme)

Soit φ une fonction bornée sur un intervalle [a, b].
1. Encadrement de la somme de Riemann :

Pour toute subdivision S de [a, b] et pour tout choix de points intermédiaires c
(points marqués), la somme de Riemann est encadrée par les sommes de Darboux
inférieure et supérieure :

σ(φ, S) ≤ R(φ, S, c) ≤ Σ(φ, S)

2. Propriété de raffinement :
Soient S et S ′ deux subdivisions de [a, b]. Si S ′ est plus fine que S (c’est-à-dire
S ⊂ S ′), alors la somme inférieure augmente et la somme supérieure diminue :

σ(φ, S) ≤ σ(φ, S ′) et Σ(φ, S ′) ≤ Σ(φ, S)

Proposition 1.4.1:
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∫ b

a φ(t)dt
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