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Introduction

Pourquoi réapprendre l’'intégration ?

Au lycée, 'intégrale ff f(z)dx est souvent pergue comme un simple outil de calcul, 'opération
inverse de la dérivée. Mais cette vision mécanique cache la véritable nature du probleme :
comment mesurer 1’aire d’une forme complexe ?

Ce cours reprend tout a zéro avec une approche visuelle et géométrique. Nous allons suivre
I'idée géniale de Riemann et Darboux : pour comprendre le compleze, il faut [’encadrer par du
simple. Concretement, nous allons ”coincer” nos courbes entre des empilements de rectangles
(fonctions en escalier).

Cette construction rigoureuse est le socle de I’Analyse Réelle. Elle nous permettra de vali-
der vos méthodes de calcul actuelles, mais aussi de toucher du doigt leurs limites, notamment
lorsqu’il s’agira de manipuler des sommes infinies ou des limites d’intégrales, préparant ainsi
le terrain pour les mathématiques avancées de la Licence 3.



]_ Intégrales des fonctions en escalier

[Chapitre]

1.1 Fonctions en escalier

WDéﬁnition 1.1.1:Subdivision et Pas

Soit [a, b] un intervalle fermé et borné de R (avec a < b).

1. On appelle subdivision de [a,b] toute suite finie strictement croissante S =
(t:)o<i<n de points de [a, b] telle que :

a=tg <t <ta<---<t,_1<t,=0b

2. On appelle pas de la subdivision S, noté 6(S) (ou parfois ||S||), la plus grande
distance entre deux points consécutifs de la subdivision :

0(S) = max (tiq —t;)

0<i<n—1

%Remarque 1:

Bien que la théorie soit construite sur un intervalle général [a,b], il est tres fréquent
dans les exemples pratiques et les exercices de choisir U'intervalle unitaire [0,1]. Ce
choix permet de simplifier considérablement les écritures et les calculs sans perdre la
généralité des propriétés démontrées.

4 Exemple 1:Subdivision quelconque sur [0,1]

Considérons l'intervalle [0,1]. La suite finie S; = (0, %,%, 1) est une subdivision de

pas 0(51) = % Les points ne sont pas obligés d’étre équidistants, par exemple Sy =
(0,0.1,0.9, 1) est aussi une subdivision valide.
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4 Exemple 2:Subdivision réguliére
C’est I'exemple le plus important pour les calculs. Pour un intervalle [a, b] et un entier
n > 1, la subdivision réguliére (ou équidistante) de pas b_Ta est définie par les points :

h—
tk:a+k-7a, pour k € {0,1,...,n}.
n

Par exemple, si n = 4 sur [0, 1], on obtient .S = (0, i, %, %, 1).

thDéﬁnition 1.1.2:Subdivision plus fine

Soient S et S’ deux subdivisions d’un méme intervalle [a,b]. On dit que la subdivision
S’ est plus fine que la subdivision S si tous les points de S sont aussi des points de 5.
Autrement dit :

Scs

Cela signifie que S’ est obtenue en ajoutant de nouveaux points a S.

Illustration du raffinement (S C S’)

a t to b
g s . . o
S’ ° ° ° ° ° ° S T
a f/ t// IL/ b

[o Points de S e Points ajoutés dans S’J

%Remarque 2:Point méthode fondamental

Soient Sy et Sy deux subdivisions quelconques d’'un méme intervalle [a, b]. Sil’on considere
la subdivision S3 constituée de la réunion (I'union) de tous les points de Sy et de Sy :

53251USQ

Alors, par construction, S; C S5 et Sy C Ss.

Conséquence : La subdivision S3 est plus fine a la fois que S; et que Ss.

Note : Gardez cette propriété en mémoire. Elle sera systématiquement utilisée dans
les démonstrations a venir, notamment pour comparer les sommes de Darboux calculées
sur des découpages différents.

Pour construire I'intégrale, nous allons utiliser des fonctions simples : les fonctions constantes
par morceaux. Pour les définir proprement, introduisons d’abord un outil de notation tres
pratique.

©Mlohamed Najib LAATABI [P p(t)dt
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CHAPITRE 1. INTEGRALES DES FONCTIONS EN ESCALIER

W Définition 1.1.3:Fonction indicatrice

Soit £ un ensemble (dans notre cas, ce sera souvent un intervalle de R) et A une partie
de E. On appelle fonction indicatrice de A, notée 14 (ou parfois y4), la fonction

définie sur F par :
1 sixed
1a(z) = .
0 siz¢ A

Intuition : Cette fonction "indique” la présence de x dans ’ensemble A (elle vaut 1) ou
son absence (elle vaut 0).

Une fonction en escalier est une fonction qui reste constante sur les intervalles ouverts
d’une subdivision.

&7 Définition 1.1.4:Fonction en escalier

Soit [a,b] un segment et S = (to,t1,...,t,) une subdivision de [a,b]. Une fonction
¢ : [a,b] — R est dite en escalier subordonnée a la subdivision S (ou adaptée a
S) si elle est constante sur chaque intervalle ouvert |¢;,¢;.1].

Autrement dit, pour tout ¢ € {0,...,n— 1}, il existe une constante ¢; € R telle que :
Vr €]t tia[, () = ¢

Ecriture algébrique : En utilisant les fonctions indicatrices, on peut écrire ¢ (sauf
éventuellement aux points de la subdivision) sous la forme :

n—1
90(17) = Z G- 1]ti7ti+1[(x>
=0

4 Exemple 3:C

onsidérons la fonction partie entiere, notée E(x) ou |z ], sur I'intervalle [0, 3]. La fonction
est définie par E(x) = k pour tout = € [k, k + 1[.

C’est une fonction en escalier subordonnée a la subdivision S = (0, 1,2, 3). En effet :
— Sur ]0, 1], la fonction est constante et vaut 0.

— Sur |1, 2[, la fonction est constante et vaut 1.

— Sur |2, 3], la fonction est constante et vaut 2.

On peut ’écrire comme combinaison linéaire d’indicatrices (aux points de discontinuité
pres) :

f(l') = O . ]_]0’1[(1') + 1- 1]1’2[(1') + 2. 1]2’3[(1')

©Mlohamed Najib LAATABI [P p(t)dt



CHAPITRE 1. INTEGRALES DES FONCTIONS EN ESCALIER )

y = |z]
2%? Ps o
1+ e—0
P o | | T
0 1 ) 3

L’ensemble des fonctions en escalier possede une structure algébrique stable, ce qui est fon-
damental pour la linéarité de I'intégrale que nous définirons plus tard.

WProposition 1.1.1:
On note &([a,b]) 'ensemble des fonctions en escalier sur [a,b]. £([a,b]) est un sous-

espace vectoriel de 'espace vectoriel des fonctions de [a, b] dans R.
Autrement dit :

1. La fonction nulle est une fonction en escalier.

2. Si ¢ et ¥ sont deux fonctions en escalier et A\, i € R, alors la combinaison linéaire
Ap + p est encore une fonction en escalier.

Démonstration. Elément neutre. La fonction nulle est constante sur ]a, b. Elle est donc en
escalier, car elle est adaptée a la subdivision triviale S = {a, b}.

Stabilité par combinaison linéaire. Soient ¢, € &£([a,b]) deux fonctions en escalier
et (\, 1) € R? deux scalaires. Par définition, il existe une subdivision S; adaptée & ¢ et une
subdivision S, adaptée a .

Le probleme est que S; et Sy ne sont pas forcément identiques. Pour pouvoir sommer
les fonctions, nous devons nous placer sur une subdivision commune. Considérons alors la
subdivision réunion :

Sz =51US5,

D’apres la remarque précédente, cette subdivision S3 est plus fine a la fois que S et que S,.
Par conséquent, la fonction ¢ est constante sur chaque intervalle ouvert de Sz (puisque S5
raffine S) et, de la méme maniére, la fonction v est également constante sur chaque intervalle
ouvert de S3 (puisque S5 raffine Sy).

Soit maintenant |ty,tx,1[ un intervalle ouvert quelconque de la subdivision S3. Sur cet
intervalle, on a :

o(r) =c et Y(x)=dg
La combinaison linéaire vaut alors :

(Ap + ) (x) = Aeg + pdy, = Constantey,

La fonction A\¢ + ) est donc constante sur tous les intervalles ouverts de la subdivision Ss.
Elle est bien une fonction en escalier. U |

©Mlohamed Najib LAATABI [P p(t)at
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CHAPITRE 1. INTEGRALES DES FONCTIONS EN ESCALIER 6

1.2 Intégrale des fonctions en escalier

Nous pouvons maintenant définir I'intégrale pour ces fonctions simples. L’idée est natu-
relle : 'intégrale est la somme des aires des rectangles formés par 1’escalier.

WDéﬁnition 1.2.1:

Soit ¢ une fonction en escalier sur [a, b]. Soit S = (o, t1, .. ., t,) une subdivision adaptée
a . Pour tout i € {0,...,n—1}, on note ¢; la valeur constante prise par ¢ sur I'intervalle
ouvert ]t“ tz’+1 [

On appelle intégrale de Riemann de la fonction en escalier ¢ sur [a, b] le nombre
réel noté I(p) ou [° (t)dt, défini par :

n—1

/ab pt)dt = citiyr — t;)

=0

Cette définition appelle une précision importante. Une fonction en escalier peut étre as-
sociée a une infinité de subdivisions différentes (en rajoutant des points inutilement). On
démontre (c’est un résultat d’indépendance) que la valeur de la somme ne dépend pas du
choix de la subdivision adaptée S. L’intégrale est donc bien définie de maniere unique pour
la fonction .

Y
! Aire positive (¢; > 0)

i 1 Aire négative (¢; < 0)
1 ca(ta —t3)

coltr —to) : 1
i (&) (t3 2 tQ) i i
i ts : 1
} 1 ‘ —> 1t

to =a t;l ! t3 ta =0

Ltz —t) |

Remarque 3:

L’intégrale correspond a l'aire algébrique comprise entre la courbe de ¢ et I'axe des
abscisses. Les rectangles situés sous I'axe (ou ¢; < 0) comptent négativement dans la
somme totale.

1.3 Propriétés de l’intégrale des fonctions en escalier

L’application qui a une fonction en escalier associe son intégrale possede des propriétés
algébriques et d’ordre remarquables. Ce sont ces mémes propriétés que 'on cherchera a
étendre plus tard a toutes les fonctions intégrables.

©Mlohamed Najib LAATABI [P p(t)at
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CHAPITRE 1. INTEGRALES DES FONCTIONS EN ESCALIER 7

Proposition 1.3.1: Linéarité
Soient ¢ et ¢ deux fonctions en escalier sur [a, b] et soient A\, u deux réels. Alors :

/KMH#WM t)dt = A/ <ﬁ+u/¢

Démonstration. Comme nous ’avons vu pour la structure d’espace vectoriel, le point clé
est de travailler sur une subdivision commune. Soient S; une subdivision adaptée a ¢ et S
adaptée a 1. Considérons S = S; U Sy = (¢;)o<i<n, qui est plus fine que les deux précédentes.
Sur chaque intervalle ouvert |t;,t;11[, ¢ prend une valeur constante ¢; et 1 prend une
valeur constante d;. La fonction combinaison linéaire Ay + p) prend donc la valeur constante
)\Ci + ,udz
Par définition de I'intégrale :

n—1
/ )\QD‘F/U# :Z /\c,+,ud H—l_ti)
=0
n—1 n—1
=AY ciltivn —t) +p Y ditiyr — t;)
=0 =0

=X[@+u£@
[ |

L’intégrale respecte I'ordre naturel des fonctions : une fonction ”"plus grande” a une intégrale
"plus grande”.

Proposition 1.3.2: Positivité et Croissance

1. Positivité : Si ¢ est une fonction en escalier positive sur [a,b] (c’est-a-dire
YV, p(x) > 0), alors :

/abgo(t)dtz()

2. Croissance : Si ¢ et 1 sont deux fonctions en escalier telles que ¢ < v sur [a, b],

alors :
b b
/ago(t)dtg/a b(t) dt

Démonstration. Pour la positivité, considérons une subdivision adaptée a ¢. Sur chaque
intervalle, ¢ vaut ¢; > 0. Comme les longueurs (¢;11 — t;) sont toujours positives, la somme
> ci(tiv1 — t;) est une somme de termes positifs, donc positive.

Pour la croissance, on applique la propriété de positivité a la fonction différence v — .
Comme ¢ > ¢, on a ¢ — ¢ > 0. Par linéarité :

ﬂw—wz/w—/¢zo=¢/w2/¢

©Mlohamed Najib LAATABI [P p(t)at



CHAPITRE 1. INTEGRALES DES FONCTIONS EN ESCALIER 8

Illustration de la croissance (¢ < ©)

L’aire sous ¢ (bleu)
Y est incluse dans
l'aire sous ¢ (rouge).

Cette propriété concerne le découpage de 'intervalle d’intégration.

Proposition 1.3.3: Relation de Chasles
Soit ¢ € E([a,b]) et soit ¢ €]a, b[. Alors :

/:go(t)dt:/:go(t)dt—l—/:go(t)dt

Démonstration. Soit S une subdivision adaptée a . Si le point ¢ n’est pas dans S, on 'ajoute
pour obtenir une subdivision S” = SU{c}. S est plus fine, donc on peut 1'utiliser pour calculer
I'intégrale.

La somme totale des rectangles sur [a, b] se scinde alors naturellement en deux paquets :
ceux situés avant ¢ (qui donnent [©¢) et ceux situés apres ¢ (qui donnent [” ). [

Pour majorer une intégrale, nous avons besoin de manipuler la valeur absolue de la fonction.

Proposition 1.3.4: Valeur absolue et Majoration
Soit ¢ une fonction en escalier sur [a, b].
1. La fonction |p|, définie par x — |p(z)], est aussi une fonction en escalier sur [a, b].

2. On a l'inégalité triangulaire pour les intégrales :

[/ rat] < ["loto)

3. En notant ||¢[|e = sup,eqp [#(2)| la borne supérieure de ||, on a la majoration
fondamentale :

<(b—a)- sup |p(z)|
z€la,b]

/a " o(t) dt

Démonstration. 1. Soit S = (t;) une subdivision adaptée a ¢. Sur chaque intervalle |t;, t;11],
¢ est constante égale a ¢;. Donc || est constante égale a |¢;|. Elle est donc bien en escalier

sur la méme subdivision.
2 et 3. Revenons a la définition de 'intégrale sous forme de somme.

n—1

/ab e(t)dt =" citiyr — t;)

=0

©Mlohamed Najib LAATABI [P p(t)at



CHAPITRE 1. INTEGRALES DES FONCTIONS EN ESCALIER 9

Prenons la valeur absolue de cette quantité. En utilisant I'inégalité triangulaire classique pour
les sommes finies (|3 zx| < 3 |zk|), et sachant que les longueurs (¢;,; — t;) sont positives :
=0

b
/ dt‘ _
n—1

< S leltin —t) (= [ le(lan
=0

1+1__t

Cela démontre le point 2. Pour le point 3, remarquons que pour tout indice 4, la valeur |¢;|
est inférieure ou égale au maximum global de la fonction sur le segment, soit M = supy, lo].

Donc :
n—1 n—1
Yoleil(tin —t) <D Mty — 1)
i=0 i=0
n—1
- M (t2+1 tz)
=0
=M(b—a)
(Car la somme des longueurs des sous-intervalles vaut la longueur totale b — a.) |
Y
T Légende

() Aire grise : (b—a) x M

b
Aire hachurée : / 0]
a

b
[
a

On observe que : < (b—a)sup|y|

Longueur : (b — a)

1.4 Sommes de Darboux et de Riemann

Pour définir I'intégrale d’une fonction bornée quelconque ¢, nous allons I’encadrer par des
fonctions en escalier. Cela nous amene a définir deux quantités : 'une approchant ’aire par
défaut (Darboux inférieur), 'autre par exces (Darboux supérieur).

1.4.1 Sommes de Darboux

Soit ¢ : [a,b] — R une fonction bornée (pas nécessairement continue pour 'instant).
Soit S = (xg,x1,...,x,) une subdivision de [a, b].

Sur chaque intervalle [x;, z;11], la fonction ¢ étant bornée, elle admet une borne inférieure
et une borne supérieure finies. On note :

m; = inf p(t) et M;= sup ()

te|w;,xiy1] tE[@s,mi11]

©Mlohamed Najib LAATABI [P p(t)at
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WDéﬁnition 1.4.1:Sommes de Darboux
On appelle :

Somme de Darboux inférieure o(p, S) la somme des aires des rectangles basés
sur les infimums :

n—1
a(p, S) = Z Tl Ty — )
i=0

Somme de Darboux supérieure X(p,S) la somme des aires des rectangles
basés sur les supremums :

Intuitivement, o(p, S) est 'intégrale de la "plus grande fonction en escalier” située sous
v, et X, S) est 'intégrale de la "plus petite fonction en escalier” située au-dessus de .

Somme Inférieure (sy,) Somme Supérieure (S,,)

{X ;Z KY

x . L
-2 2 -2 2

a : Somme de Darboux inférieure b : Somme de Darboux supérieure

pour la fonction f(z) = e sur pour la fonction f(z) = e sur

I'intervalle [—3, 3] avec n = 15. I'intervalle [—3, 3] avec n = 15.

1.4.2 Sommes de Riemann

Bernhard Riemann a proposé une approche légerement différente. Au lieu de chercher le
min ou le max exact sur l'intervalle (qui peuvent étre difficiles a calculer), on choisit un point
au hasard dans chaque intervalle.

Définition 1.4.2:Somme de Riemann
On appelle subdivision pointée la donnée d’une subdivision S = (x;) et d’une famille
de points £ = (&, ...,&,_1) tels que pour tout i, & € [y, 2441

La somme de Riemann associée a ce choix est :

n—1

R(p,5,8) =Y o(&)(@iy1 — )

1=0

©Mohamed Najib LAATABI 10 [P p(t)at
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CHAPITRE 1. INTEGRALES DES FONCTIONS EN ESCALIER 11

Somme de Riemann (points aléatoires ¢;)

\

2

Somme de Riemann de f(z) = e
sur [—3,3] avec n = 15 et des points
d’évaluation ¢; choisis aléatoirement.

%Remarque 4:Lien fondamental
Pour tout choix de points &;, on a ’encadrement fondamental :

a(p,S) < R(p, S, €) < X(p,5)

L’intégrale sera définie lorsque 1’écart entre la somme inférieure et la somme supérieure
deviendra arbitrairement petit.

Somme Inférieure (0,,) Somme de Riemann (R,) Somme Supérieure (%)
Aire ~ 1.58 On < Ry < 2 Aire ~ 1.98

R

a /1 /1N

-3 3 -3 3 -3 3

Comparaison des Sommes
La somme de Riemann R, (milieu) est toujours encadrée par
la somme inférieure o, (gauche) et la somme supérieure 3, (droite).

©Mlohamed Najib LAATABI [P p(t)at
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4 Exemple 4:

Considérons ¢(x) = 2 sur [0, 1] avec la subdivision réguliere z; = . La fonction est
croissante, donc sur chaque intervalle [+, ]

n’ n
Le minimum est atteint a gauche : m; = ¢(z;) = (£)2.
Le maximum est atteint & droite : M; = p(2;41) = ()2
La somme de Darboux inférieure vaut :

n—1 i 2 1 171—1.
=3 (5) e w s

3
i—0 T n° o

La somme de Darboux supérieure vaut :

n—1 ,- 2 n
En:Z<Z+1> 11 SR

i—0 N T

Un calcul de limite (utilisant la formule de la somme des carrés) montrerait que les deux

;L
convergent vers 3.

gf Définition 1.4.3:(Somme de Riemann Uniforme)

Soit ¢ : [a,b] — R une fonction bornée. Soit S = {xg,21,...,2,} une subdivision
uniforme de [a, b] telle que zj, = a + k=2

La somme de Riemann de ¢ associée a S et aux points marqués ¢, € [Tg, Tpi1] est
donnée par :

b_an 1

R, —Z@Ck Z@Ck
b—a

ot §(S) = =% représente la largeur de chaque sous-intervalle.

WProposition 1.4.1:
Soit ¢ une fonction bornée sur un intervalle [a, b].

1. Encadrement de la somme de Riemann :
Pour toute subdivision S de [a,b] et pour tout choix de points intermédiaires ¢

(points marqués), la somme de Riemann est encadrée par les sommes de Darboux
inférieure et supérieure :

o(p,S) < R(p,S,¢c) < X(p, S)

2. Propriété de raffinement :

Soient S et S’ deux subdivisions de [a,b]. Si 5" est plus fine que S (c’est-a-dire
S C §'), alors la somme inférieure augmente et la somme supérieure diminue :

a(p,S) < a(p,S) et XN(p,8) < X(p,S)

©Mlohamed Najib LAATABI 12 [P p(t)dt
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