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]_ Nombres Réels

[Chapitre]

1.1 Propriétés élémentaires du corps des réels

Pour répondre aux besoins de comptage et de mesure, nous disposons depuis longtemps
des trois ensembles fondamentaux suivants :

— L’ensemble des entiers naturels : N={0,1,2,...,n,...}.
— L’ensemble des entiers relatifs : Z ={...,—n,...,—2,-1,0,1,2,...,n,... }.
— L’ensemble des rationnels : Q = {%’ 'p,q €L, qF O}.

Il est évident que N C Z C Q. Ces ensembles couvrent la plupart des besoins pour
effectuer des calculs.

Cependant, les mathématiciens savent, depuis 1’époque de Pythagore, qu’il existe des
quantités qui ne peuvent étre exprimées a l'aide de ces ensembles. Un exemple classique est
la longueur x de la diagonale d’un carré de coté 1.

En effet, d’apres le théoréeme de Pythagore, on a :

12412 =42
mais, comme le montre la proposition suivante, x ¢ Q.

%Proposition 1.1.1:

S Si z est solution de 'équation 22 = 2, alors x ¢ Q.

Démonstration. Nous allons démontrer ce résultat en utilisant la méthode du raisonnement
par P’absurde.

Supposons que T = %, ou p € Z et q € Z* sont premiers entre eux (c’est-a-dire que leur
seul diviseur commun est 1).

Si 22 = 2, alors : ,

(p) =2 = p? =24
q

Ainsi, p? est pair, ce qui implique que p est également pair (car le carré d’un entier impair
est impair). On peut donc écrire p = 2k, ou k € Z.

En substituant p = 2k dans ’équation p? = 2¢?, nous obtenons :

(2k)? = 2¢° = 4k* =2¢* = 2k* = ¢

1
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Ainsi, ¢? est pair, ce qui implique que ¢ est également pair.

Cependant, cela contredit ’hypothese selon laquelle p et ¢ sont premiers entre eux (si p
et ¢ sont tous deux pairs, ils ont au moins 2 comme diviseur commun).

Par conséquent, notre supposition que x € QQ est fausse.

Conclusion : z ¢ Q.
|

La construction de I'ensemble des nombres réels a été un sujet d’étude approfondi pen-
dant plusieurs décennies. Elle s’appuie exclusivement sur quelques axiomes fondamentaux
qui prolongent de maniere naturelle les propriétés de Q. Bien que cette construction soit tres
enrichissante sur le plan conceptuel, elle ne sera pas abordée dans le cadre de ce cours. Nous
nous limiterons a admettre 'existence de ’ensemble des réels R, lequel satisfait les axiomes
suivants :

Stabilité : Ve,y e Kz +yeKet x xy € K

Commutativité : Ve, y e Ko +y=y+zretx xy=y xx

Associativité : Vo,y,z € K, (v 4+y)+2=2+ (y+2) et (z X y) X 2 =2 X (y X 2)

Distributivité : Vz,y,z e Kla x (y+2) =z xy+xz X 2

Eléments neutres : 30,1 e K,Ve e K,z +0=zet z x 1 =z

Opposés/Inverses : Vo € K, 3(—z) € K,(—z) +z = 0et Vo € K\ {0},3z7! € K\
{0}z x 271 =1,

Propriété de la borne supérieure : Toute partie de R non vide et majorée admet une
borne supérieure.

La relation d’ordre total permet de définir la fonction valeur absolue dans R.

1.2 Valeur Absolue

On définit sur R 'application “valeur absolue” par :

T six >0,

—x sinon.

Vo € R, ]:L’|:{

Remarque 1:
D’apres la définition de I'application valeur absolue, on a, pour tout z € R,

|z| = | — 2| = max(z, —x).

Les résultats suivants sont tres importants pour la manipulation de ’application valeur ab-
solue d’un produit, une somme ou une différence de réels.

WProposition 1.2.1:
L’application valeur absolue vérifie les propriétés suivantes :
l.zeR, |z|=0 <= =0
v,y € R, [zy| = |z|ly|
Ve € R, |z|? = |2?| = 22
VeeR, Vy >0, [z|<y <= —y<z<y
Ve,y € R, |z +y| < |z| + |y

CON
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6. Vo,y €R, [[z| —|yl| < |z —y]
7. x| =0 <= (Jz| <e, Ve >0)
8. x<y < (x<y+e Ve >0)

Démonstration. 11 est évident que si |z| = 0, alors pour tout € > 0, |z] < e.

— Izl

Supposons maintenant que pour tout € > 0, || < &, mais |z| # 0. En prenant ¢’ = 5, on
obtient une contradiction :
Puisque |z|] < &' = %‘, cela implique que |z| < %l, ce qui est une contradiction.
Ainsi, notre supposition est fausse, et donc |z| = 0.
|

1.3 Bornes supérieure et inférieure

WDéﬁnition 1.3.1:

Soit E/ un sous-ensemble non-vide de R et soient m et M deux réels.

On dit que E est une partie minorée par m (ou que m est un minorant de E) si
m < z, Vx € E. Le plus grand minorant de E, noté inf E/, est appelé borne inférieure
de E.

On dit que E est une partie majorée par M (ou que M est un majorant de F) si
x < M, Vx € E. Le plus petit majorant de F, noté sup F, est appelé borne supérieure
de F.

On dit que E est une partie bornée si elle est a la fois minorée et majorée.

WProposition 1.3.1:

§ Soit E une partie non-vide et minorée dans R, alors

a=infE < (Vxe€FE,a<z)et (Ve>0, . € E:a<2.<a+e¢)

Démonstration. = Supposons que a = inf F. Soit € > 0, a + € n’est pas un minorant pour
E (d’apres la définition de a). Donc il existe z. € E qui vérifie a < 2. < a +¢.
< Soient F une partie non-vide et minorée dans R et a un réel tels que

VeeFE,a<x e Ve>0, dr.e F:a<z.<a+e.

Il est clair que a est un minorant de E. Supposons qu’il existe un minorant de E, noté

a’, qui soit strictement plus grand que a. Pour ¢ = “/24“ > 0, il existe z. € E tel que

/ . . . .
T. < a+e =% <a. Ceciest impossible car a’ est un minorant de E.
[ |

WProposition 1.3.2:

é Soit £ une partie non-vide et majorée dans R, alors

b=supF <= (Vze€E, z<b)et (Ve>0, Jz.€ E:b—ec<x.<Dh)
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WProposition 1.3.3:

< Lorsque la borne inférieure (ou supérieure) existe, elle est unique.

Démonstration. Supposons qu’il existe F, une partie de R non-vide et majorée, qui admet
deux bornes inférieures b et b’ € R avec b < b'. Supposons que b < b’ et soit € = b’ —b. D’apres
la caractérisation de la borne inférieure, il existe x € E tel que

bV =b4+e<a<b.

Ceci contredit le fait que b’ est une borne inférieure de F. [ |

Les deux propriétés suivantes caractérisent ’ensemble des réels R.

Propriété de la borne inférieure :
Toute partie E non-vide et minorée admet une borne inférieure dans R.

Propriété de la borne supérieure :
Toute partie E non-vide et majorée admet une borne supérieure dans R.

Si E est une partie de R non-vide et non majorée (respectivement non minorée) on pose
sup £ = 400 (respectivement inf £ = —o0).

Remarque 2:
| Les deux propriétés ci-dessus sont équivalentes

1.4 Propriété d’Aarchimede

Archimede fut le premier a constater qu'un voyageur partant a pied d’un point A peut
atteindre un point C, apres un nombre fini de pas. Ce constat, appelé Propriété d’Archimede,
peut étre formulé comme suit :

Théoréme 1.4.1: (Propriété d’Archimede) ]
Soit x € Ret y € R, dn € N tel que v < ny. ]

Démonstration. Supposons par ’absurde que
VneN, ny <z

Définissons A = {ny : n € N}. Alors A est une partie de R, non vide car 0 € A, et majorée
par x.

D’apres le principe de la borne supérieure, A admet une borne supérieure s = sup(A) dans
R.

Par définition de la borne supérieure :

VneN, ny <s,
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et
Ve > 0, dng € N tel que s — € < ngy < s.

Prenons € = . Alors il existe ng € N tel que
s—y <ngy < 8.
En ajoutant y des deux cotés de I'inégalité s — y < ngy, on obtient :
s < (ng+1)y.

Puisque (ng+ 1)y € A (car ng + 1 € N), cela contredit le fait que s est la borne supérieure
de A.
Ainsi, 'hypothese Vn € N, ny < x est fausse.

Conclusion : Il existe n € N tel que x < ny.

Théoréeme 1.4.2: ]

Ve eR, dlm e Ztel quem <z <m+ 1.

De plus, m est appelé la partie entiére de = (et on note m par E(x)).

Démonstration. Soit x € R. Considérons ’ensemble
B={neZ:n<uzx}.

1. B est non vide :
Supposons par 'absurde que B est vide. Cela signifierait que x < n pour tout n € Z. Prenons
x = 1. Cela impliquerait que 1 < n pour tout n € 7Z, ce qui est absurde. Donc B est non
vide.

2. B est majoré :
Clairement, B C Z et tout n € B satisfait n < x. Par conséquent, B est majoré par x.

3. Existence d’un maximum :
Puisque B est une partie non vide et majorée de Z, B admet un maximum my = max(B).
Par définition de B, on a mg < x, et comme my est le maximum, mg + 1 > x.

4. Unicité de my :
Supposons qu’il existe un autre entier m; € Z tel que m; < x < m; + 1. Par définition de
B, m; € B, mais comme m; # my, cela impliquerait m; > mg, ce qui contredit le fait que
mo = max(B). Ainsi, m est unique.

Conclusion : Il existe un unique entier m € Z tel que m < x < m+1, et m est la partie
entiere de x.

|
1.5 La densité de Q dans R
Théoréeme 1.5.1: }
L’ensemble Q est dense dans R. ]
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Démonstration. Puisque R Archimede, montrons que Q est dense dans R.

Soient z,y € R tels que x < y. On a alors :

0<y—ux.

D’apres 'axiome d’Archimede, il existe un entier naturel m € N* tel que :

0<1<m(y—a).

Cela implique :
1+ mz <my.

En posant n = E(maz) (la partie entiere de mx), on an € Z et :

n<mr<n-+l1.

En divisant par m, on obtient :

n+1

3=
3

Posons p =n+ 1. On a alors :

:L‘<£ et 26@.
m m

De plus, puisque p < mz + 1, on en déduit que :

Loy
m

Ainsi, £ € Q vérifie z < £ < y.
m . m
Conclusion :

Pour tout x,y € R avec x < y, il existe un ¢ € Q tel que x < ¢ < y. Par conséquent, Q est

dense dans R.
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