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Symboles et abréviations

Symbole Description / Signification Chapitre
N,Z,Q,R Ensembles des entiers (nat., rel.), rationnels et réels 1
|x| Valeur absolue de x 1
sup(E), inf(E) Borne supérieure et borne inférieure de l’ensemble E 1
E(x) ou ⌊x⌋ Partie entière du réel x 1
(un)n∈N Suite numérique 2
lim

n→+∞
un Limite d’une suite 2

∀, ∃, =⇒ Pour tout, il existe, implique (Logique) 2
ϵ (epsilon) Un réel strictement positif aussi petit que l’on veut 2
f : I → R Fonction réelle définie sur un intervalle I 3
lim

x→x0
f(x) Limite de la fonction f quand x tend vers x0 3

f ◦ g Composition des fonctions f et g 3
f−1 Fonction réciproque de f 3
f ′(x) Dérivée première de f au point x 4
f ′

g(x), f ′
d(x) Dérivée à gauche et dérivée à droite 4

f (n)(x) Dérivée d’ordre n (dérivées successives) 4
TAF / IAF Théorème / Inégalité des Accroissements Finis 4
f ′′ Dérivée seconde (utilisée pour la convexité) 4
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1 Nombres Réels

1.1 Propriétés élémentaires du corps des réels
Pour répondre aux besoins de comptage et de mesure, nous disposons depuis longtemps

des trois ensembles fondamentaux suivants :
— L’ensemble des entiers naturels : N = {0, 1, 2, . . . , n, . . . }.
— L’ensemble des entiers relatifs : Z = {. . . , −n, . . . , −2, −1, 0, 1, 2, . . . , n, . . . }.
— L’ensemble des rationnels : Q =

{
p
q

: p, q ∈ Z, q ̸= 0
}
.

Il est évident que N ⊂ Z ⊂ Q. Ces ensembles couvrent la plupart des besoins pour
effectuer des calculs.

Cependant, les mathématiciens savent, depuis l’époque de Pythagore, qu’il existe des
quantités qui ne peuvent être exprimées à l’aide de ces ensembles. Un exemple classique est
la longueur x de la diagonale d’un carré de côté 1.

En effet, d’après le théorème de Pythagore, on a :

12 + 12 = x2,

mais, comme le montre la proposition suivante, x /∈ Q.

Si x est solution de l’équation x2 = 2, alors x /∈ Q.
Proposition 1.1.1:

Démonstration. Nous allons démontrer ce résultat en utilisant la méthode du raisonnement
par l’absurde.

Supposons que x = p
q
, où p ∈ Z et q ∈ Z∗ sont premiers entre eux (c’est-à-dire que leur

seul diviseur commun est 1).
Si x2 = 2, alors : (

p

q

)2

= 2 =⇒ p2 = 2q2.

Ainsi, p2 est pair, ce qui implique que p est également pair (car le carré d’un entier impair
est impair). On peut donc écrire p = 2k, où k ∈ Z.

En substituant p = 2k dans l’équation p2 = 2q2, nous obtenons :

(2k)2 = 2q2 =⇒ 4k2 = 2q2 =⇒ 2k2 = q2.
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CHAPITRE 1. NOMBRES RÉELS 2

Ainsi, q2 est pair, ce qui implique que q est également pair.
Cependant, cela contredit l’hypothèse selon laquelle p et q sont premiers entre eux (si p

et q sont tous deux pairs, ils ont au moins 2 comme diviseur commun).
Par conséquent, notre supposition que x ∈ Q est fausse.
Conclusion : x /∈ Q.

■

La construction de l’ensemble des nombres réels a été un sujet d’étude approfondi pen-
dant plusieurs décennies. Elle s’appuie exclusivement sur quelques axiomes fondamentaux
qui prolongent de manière naturelle les propriétés de Q. Bien que cette construction soit très
enrichissante sur le plan conceptuel, elle ne sera pas abordée dans le cadre de ce cours. Nous
nous limiterons à admettre l’existence de l’ensemble des réels R, lequel satisfait les axiomes
suivants :

Stabilité : ∀x, y ∈ K, x + y ∈ K et x × y ∈ K
Commutativité : ∀x, y ∈ K, x + y = y + x et x × y = y × x
Associativité : ∀x, y, z ∈ K, (x + y) + z = x + (y + z) et (x × y) × z = x × (y × z)
Distributivité : ∀x, y, z ∈ K, x × (y + z) = x × y + x × z
Éléments neutres : ∃0, 1 ∈ K, ∀x ∈ K, x + 0 = x et x × 1 = x
Opposés/Inverses : ∀x ∈ K, ∃(−x) ∈ K, (−x) + x = 0 et ∀x ∈ K \ {0}, ∃x−1 ∈ K \

{0}, x × x−1 = 1,
Propriété de la borne supérieure : Toute partie de R non vide et majorée admet une

borne supérieure.
La relation d’ordre total permet de définir la fonction valeur absolue dans R.

1.2 Valeur Absolue
On définit sur R l’application “valeur absolue” par :

∀x ∈ R, |x| =

x si x ≥ 0,

−x sinon.

D’après la définition de l’application valeur absolue, on a, pour tout x ∈ R,

|x| = | − x| = max(x, −x).

Remarque 1:

Les résultats suivants sont très importants pour la manipulation de l’application valeur ab-
solue d’un produit, une somme ou une différence de réels.

L’application valeur absolue vérifie les propriétés suivantes :
1. x ∈ R, |x| = 0 ⇐⇒ x = 0
2. ∀x, y ∈ R, |xy| = |x||y|
3. ∀x ∈ R, |x|2 = |x2| = x2

4. ∀x ∈ R, ∀y > 0, |x| ≤ y ⇐⇒ −y ≤ x ≤ y

5. ∀x, y ∈ R, |x + y| ≤ |x| + |y|

Proposition 1.2.1:
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6. ∀x, y ∈ R, ||x| − |y|| ≤ |x − y|
7. |x| = 0 ⇐⇒ (|x| ≤ ε, ∀ε > 0)
8. x ≤ y ⇐⇒ (x ≤ y + ε, ∀ε > 0)

Démonstration. Il est évident que si |x| = 0, alors pour tout ε > 0, |x| ≤ ε.
Supposons maintenant que pour tout ε > 0, |x| < ε, mais |x| ≠ 0. En prenant ε′ = |x|

2 , on
obtient une contradiction :

Puisque |x| < ε′ = |x|
2 , cela implique que |x| < |x|

2 , ce qui est une contradiction.
Ainsi, notre supposition est fausse, et donc |x| = 0.

■

1.3 Bornes supérieure et inférieure

Soit E un sous-ensemble non-vide de R et soient m et M deux réels.
On dit que E est une partie minorée par m (ou que m est un minorant de E) si

m ≤ x, ∀x ∈ E. Le plus grand minorant de E, noté inf E, est appelé borne inférieure
de E.

On dit que E est une partie majorée par M (ou que M est un majorant de E) si
x ≤ M, ∀x ∈ E. Le plus petit majorant de E, noté sup E, est appelé borne supérieure
de E.

On dit que E est une partie bornée si elle est à la fois minorée et majorée.

Définition 1.3.1:

Soit E une partie non-vide et minorée dans R, alors

a = inf E ⇐⇒ (∀x ∈ E, a ≤ x) et (∀ε > 0, ∃xε ∈ E : a ≤ xε < a + ε)

Proposition 1.3.1:

Démonstration. ⇒ Supposons que a = inf E. Soit ε > 0, a + ε n’est pas un minorant pour
E (d’après la définition de a). Donc il existe xε ∈ E qui vérifie a ≤ xε < a + ε.

⇐ Soient E une partie non-vide et minorée dans R et a un réel tels que

∀x ∈ E, a ≤ x et ∀ε > 0, ∃xε ∈ E : a ≤ xε < a + ε.

Il est clair que a est un minorant de E. Supposons qu’il existe un minorant de E, noté
a′, qui soit strictement plus grand que a. Pour ε = a′−a

2 > 0, il existe xε ∈ E tel que
xε < a + ε = a′+a

2 < a′. Ceci est impossible car a′ est un minorant de E.
■

Soit E une partie non-vide et majorée dans R, alors

b = sup E ⇐⇒ (∀x ∈ E, x ≤ b) et (∀ε > 0, ∃xε ∈ E : b − ε < xε ≤ b)

Proposition 1.3.2:

mohamednajiblaatabi.com 3 Analyse Réelle— Cours & TD

https://mohamednajiblaatabi.com/bibliotheque-de-cours-et-ressources-pedagogiques/


CHAPITRE 1. NOMBRES RÉELS 4

Lorsque la borne inférieure (ou supérieure) existe, elle est unique.
Proposition 1.3.3:

Démonstration. Supposons qu’il existe E, une partie de R non-vide et majorée, qui admet
deux bornes inférieures b et b′ ∈ R avec b ≤ b′. Supposons que b < b′ et soit ε = b′ −b. D’après
la caractérisation de la borne inférieure, il existe x ∈ E tel que

b′ = b + ε < x ≤ b.

Ceci contredit le fait que b′ est une borne inférieure de E. ■

Les deux propriétés suivantes caractérisent l’ensemble des réels R.

Propriété de la borne inférieure :
Toute partie E non-vide et minorée admet une borne inférieure dans R.

Propriété de la borne supérieure :
Toute partie E non-vide et majorée admet une borne supérieure dans R.

Si E est une partie de R non-vide et non majorée (respectivement non minorée) on pose
sup E = +∞ (respectivement inf E = −∞).

Les deux propriétés ci-dessus sont équivalentes
Remarque 2:

1.4 Propriété d’Aarchimède
Archimède fut le premier à constater qu’un voyageur partant à pied d’un point A peut

atteindre un point C, après un nombre fini de pas. Ce constat, appelé Propriété d’Archimède,
peut être formulé comme suit :

Théorème 1.4.1: (Propriété d’Archimède)
Soit x ∈ R et y ∈ R∗

+, ∃n ∈ N tel que x < ny.

Démonstration. Supposons par l’absurde que

∀n ∈ N, ny ≤ x.

Définissons A = {ny : n ∈ N}. Alors A est une partie de R, non vide car 0 ∈ A, et majorée
par x.
D’après le principe de la borne supérieure, A admet une borne supérieure s = sup(A) dans
R.
Par définition de la borne supérieure :

∀n ∈ N, ny ≤ s,
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et
∀ϵ > 0, ∃n0 ∈ N tel que s − ϵ < n0y ≤ s.

Prenons ϵ = y. Alors il existe n0 ∈ N tel que

s − y < n0y ≤ s.

En ajoutant y des deux côtés de l’inégalité s − y < n0y, on obtient :

s < (n0 + 1)y.

Puisque (n0 + 1)y ∈ A (car n0 + 1 ∈ N), cela contredit le fait que s est la borne supérieure
de A.
Ainsi, l’hypothèse ∀n ∈ N, ny ≤ x est fausse.

Conclusion : Il existe n ∈ N tel que x < ny.
■

Théorème 1.4.2:

∀x ∈ R, ∃!m ∈ Z tel que m ≤ x < m + 1.

De plus, m est appelé la partie entière de x (et on note m par E(x)).

Démonstration. Soit x ∈ R. Considérons l’ensemble

B = {n ∈ Z : n ≤ x}.

1. B est non vide :
Supposons par l’absurde que B est vide. Cela signifierait que x < n pour tout n ∈ Z. Prenons
x = 1. Cela impliquerait que 1 < n pour tout n ∈ Z, ce qui est absurde. Donc B est non
vide.

2. B est majoré :
Clairement, B ⊆ Z et tout n ∈ B satisfait n ≤ x. Par conséquent, B est majoré par x.

3. Existence d’un maximum :
Puisque B est une partie non vide et majorée de Z, B admet un maximum m0 = max(B).
Par définition de B, on a m0 ≤ x, et comme m0 est le maximum, m0 + 1 > x.

4. Unicité de m0 :
Supposons qu’il existe un autre entier m1 ∈ Z tel que m1 ≤ x < m1 + 1. Par définition de
B, m1 ∈ B, mais comme m1 ̸= m0, cela impliquerait m1 > m0, ce qui contredit le fait que
m0 = max(B). Ainsi, m0 est unique.

Conclusion : Il existe un unique entier m ∈ Z tel que m ≤ x < m + 1, et m est la partie
entière de x.

■

1.5 La densité de Q dans R

Théorème 1.5.1:
L’ensemble Q est dense dans R.
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Démonstration. Puisque R Archimède, montrons que Q est dense dans R.
Soient x, y ∈ R tels que x < y. On a alors :

0 < y − x.

D’après l’axiome d’Archimède, il existe un entier naturel m ∈ N∗ tel que :

0 < 1 < m(y − x).

Cela implique :
1 + mx < my.

En posant n = E(mx) (la partie entière de mx), on a n ∈ Z et :

n ≤ mx < n + 1.

En divisant par m, on obtient :

n

m
≤ x <

n + 1
m

.

Posons p = n + 1. On a alors :

x <
p

m
et p

m
∈ Q.

De plus, puisque p < mx + 1, on en déduit que :
p

m
< y.

Ainsi, p
m

∈ Q vérifie x < p
m

< y.
Conclusion :

Pour tout x, y ∈ R avec x < y, il existe un q ∈ Q tel que x < q < y. Par conséquent, Q est
dense dans R. ■
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