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Symboles et abréviations

Symbole Description / Signification Chapitre
N,Z,Q,R Ensembles des entiers (nat., rel.), rationnels et réels 1
|x| Valeur absolue de x 1
sup(E), inf(E) Borne supérieure et borne inférieure de l’ensemble E 1
E(x) ou ⌊x⌋ Partie entière du réel x 1
(un)n∈N Suite numérique 2
lim

n→+∞
un Limite d’une suite 2

∀, ∃, =⇒ Pour tout, il existe, implique (Logique) 2
ϵ (epsilon) Un réel strictement positif aussi petit que l’on veut 2
f : I → R Fonction réelle définie sur un intervalle I 3
lim

x→x0
f(x) Limite de la fonction f quand x tend vers x0 3

f ◦ g Composition des fonctions f et g 3
f−1 Fonction réciproque de f 3
f ′(x) Dérivée première de f au point x 4
f ′

g(x), f ′
d(x) Dérivée à gauche et dérivée à droite 4

f (n)(x) Dérivée d’ordre n (dérivées successives) 4
TAF / IAF Théorème / Inégalité des Accroissements Finis 4
f ′′ Dérivée seconde (utilisée pour la convexité) 4
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2 Suites numériques

2.1 Généralités sur les suites

2.1.1 Définition
D’une façon générale, on définit une suite comme une succession ordonnée d’éléments pris

dans un ensemble donné.

Une suite numérique, dite aussi suite réelle, est une application u d’une partie I de N
dans R. On la note {u(n), n ∈ I}, (un)n∈I ou tout simplement (un)n.

Définition 2.1.1:

L’ensemble I s’appelle le domaine de la suite et un s’appelle son terme général.

1. Une suite (un)n peut être définie par l’expression de son terme général un en
fonction de n.

2. Elle peut également être définie par la valeur du premier terme et par une relation
de récurrence, c’est-à-dire une relation liant deux termes généraux successifs. On
dit alors que c’est une suite récurrente.

Remarque 1:

1. (an)n, la suite définie par : an = (−1)n, qui alterne entre 1 et −1.
2. (bn)n, la suite définie par : bn = n2

n+1 , qui tend vers n lorsque n devient grand.

Exemple 1:

2.1.2 Opérations sur l’ensemble des suites numériques
Les suites numériques permettent de réaliser différentes opérations mathématiques qui

sont souvent utilisées dans les démonstrations et les analyses de convergence.
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CHAPITRE 2. SUITES NUMÉRIQUES 2

Soient (un)n et (vn)n deux suites numériques.

L’addition des suites est définie terme à terme par :

(wn)n = (un + vn)n, pour tout n.

Autrement dit, pour chaque indice n, le terme général de la nouvelle suite (wn) est la
somme des termes correspondants des suites (un) et (vn).

La multiplication des suites numériques est également définie terme à terme par :

(wn)n = (un × vn)n, pour tout n.

Ainsi, pour chaque n, le terme général de la nouvelle suite (wn) est le produit des termes
correspondants des suites (un) et (vn).

Soit λ un réel. Le produit de la suite par un scalaire est défini par :

(vn)n = (λun)n, pour tout n.

Chaque terme de la nouvelle suite (vn) est obtenu en multipliant chaque terme de la
suite (un) par λ.

Définition 2.1.2: Addition et Multiplication des suites

Soient (un)n = 1
n

et (vn)n = (−1)n. Alors, la suite (wn)n = (un + vn)n est définie par :

wn = 1
n

+ (−1)n.

Soient (un)n = 1
n

et (vn)n = cos(nπ). Alors, la suite (wn)n = (un × vn)n est donnée
par :

wn = 1
n

× cos(nπ).

Si λ = 2 et (un)n = 1
n
, la suite (vn)n est donnée par :

vn = 2 × 1
n

= 2
n

.

Exemple 2:

Opérations de sommes et de différences
Les suites peuvent également être additionnées ou soustraites terme à terme, et des expres-
sions comme la somme ou la différence de deux suites peuvent être manipulées de manière
similaire aux opérations sur des nombres réels.

2.2 Le principe de récurrence
Ce principe de démonstration par récurrence s’applique lorsqu’on cherche à démontrer

qu’une propriété Pn dépendant d’un entier naturel n est vraie pour tout entier n ≥ n0, n0
étant un entier naturel donné.
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CHAPITRE 2. SUITES NUMÉRIQUES 3

2.2.1 Principe du raisonnement par récurrence

On considère une propriété Pn. Pour démontrer que Pn est vraie pour tout entier
n ≥ n0, on procède en trois étapes :
A) Initialisation : on montre que la propriété est vraie pour n = n0, c’est-à-dire que
Pn0 est vraie.
B) Hérédité : on démontre que si la propriété est vraie pour un entier k ≥ n0, alors
elle est vraie pour l’entier suivant k + 1. Autrement dit si Pk est vraie alors Pk+1.
On dit que la propriété est héréditaire à partir du rang n0.
C) Conclusion :

— la propriété est initialisée,
— elle est héréditaire.

Par conséquenta, Pn est vraie pour tout entier n ≥ n0.
a Il est primordial que les deux conditions de ce principe soient réunies !

2.3 Variations, monotonie d’une suite

2.3.1 Suites bornées

Une suite (un)n∈N est dite :
a) majorée (ou bornée supérieurement) s’il existe un nombre M ∈ R tel que :

un ≤ M, ∀n ∈ N.

On dit alors que M est un majorant de la suite.
b) minorée (ou bornée inférieurement) s’il existe un nombre m ∈ R tel que :

m ≤ un, ∀n ∈ N.

On dit alors que m est un minorant de la suite.
c) bornée si elle est à la fois majorée et minorée, c’est-à-dire s’il existe deux nombres

m, M ∈ R tels que :
m ≤ un ≤ M, ∀n ∈ N.

Définition 2.3.1: Suites bornées :

(un)n∈N est majorée ⇐⇒ E = {un | n ∈ N} est majoré,

(un)n∈N est minorée ⇐⇒ E = {un | n ∈ N} est minoré,

(un)n∈N est bornée ⇐⇒ E = {un | n ∈ N} est borné.

Remarque 2:
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CHAPITRE 2. SUITES NUMÉRIQUES 4

Soit (un) une suite. On dit que :
a) la suite (un)n∈N est croissante si pour tout n ∈ N : un ≤ un+1 ;
b) la suite (un)n∈N est décroissante si pour tout n ∈ N : un ≥ un+1 ;
c) la suite (un)n∈N est monotone si elle est croissante ou décroissante ;
d) la suite (un)n∈N est constante si pour tout n ∈ N : un+1 = un.

Définition 2.3.2:

— Il existe des suites qui ne sont ni croissantes, ni décroissantes : un = (−1)n.
— Les premiers termes de la suite n’entrent pas forcément en compte dans la variation

d’une suite. Ils peuvent cependant donner une indication sur la monotonie de la
suite.

Remarque 3:

Pour déterminer le sens de variation d’une suite (un), on peut utiliser l’une des règles
suivantes :

a) On étudie le signe de la différence un+1 − un.
— Si un+1 − un est positive, alors la suite (un) est croissante.
— Si un+1 − un est négative, alors la suite (un) est décroissante.
b) Si tous les termes de la suite sont strictement positifs, alors il suffit de comparer

le rapport un+1

un

à 1.

— Si un+1

un

≥ 1, alors la suite (un) est croissante.

— Si un+1

un

≤ 1, alors la suite (un) est décroissante.

c) On utilise un raisonnement par récurrence (voir dans la suite de cours).

Remarque 4:

2.4 Suites particulières
Les suites se distinguent par des propriétés particulières qui les rendent intéressantes et

méritent ainsi un traitement spécifique. Parmi elles, les suites arithmétiques et les suites
géométriques jouent un rôle fondamental dans divers domaines mathématiques, en raison de
leurs caractéristiques uniques.

2.4.1 Suites arithmétiques
Une suite arithmétique est une suite numérique dans laquelle la différence entre deux

termes successifs est constante. Cette constante est appelée la raison de la suite.
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CHAPITRE 2. SUITES NUMÉRIQUES 5

Une suite (un) est une suite arithmétique de raison r si, pour tout n, on a :

un+1 = un + r, pour tout n.

Autrement dit, la suite arithmétique est définie par une relation de récurrence dans
laquelle chaque terme est obtenu en ajoutant la même constante r au terme précédent.

Définition 2.4.1:

La suite (un) définie par un = 3n + 2 est une suite arithmétique de raison r = 3, car :

un+1 = 3(n + 1) + 2 = 3n + 5 = un + 3.

Exemple 3:

2.4.2 Suites géométriques
Une suite géométrique est une suite numérique dans laquelle chaque terme est obtenu en

multipliant le terme précédent par une constante appelée la raison de la suite.

Une suite (vn) est une suite géométrique de raison q si, pour tout n, on a :

vn+1 = vn × q, pour tout n.

Ainsi, chaque terme de la suite est le produit du terme précédent par un facteur constant
q, appelé raison.

Définition 2.4.2:

La suite (vn) définie par vn = 2n est une suite géométrique de raison q = 2, car :

vn+1 = 2n+1 = 2n × 2 = vn × 2.

Exemple 4:

Imaginons que nous avons une feuille de papier dont l’épaisseur initiale est de 1 mm. Si
nous plions cette feuille une fois, son épaisseur sera doublée. Après chaque pli, l’épaisseur
de la feuille est multipliée par 2. Cela suit donc une suite géométrique de raison 2,
où chaque terme représente l’épaisseur de la feuille après n plis. Ainsi, après n plis,
l’épaisseur En de la feuille est donnée par :

En = 1 × 2n mm.

Calcul de l’épaisseur après 50 plis
Après 50 plis, l’épaisseur de la feuille sera :

E50 = 250 mm.

Pour mieux comprendre cette valeur, nous allons la convertir en kilomètres. Comme
1 km = 106 mm, nous avons :

Exemple 5:De la feuille à la Lune !
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CHAPITRE 2. SUITES NUMÉRIQUES 6

E50 = 250

106 km.

Calculons la valeur exacte de 250 :

250 = 1125899906842624.

Ainsi, l’épaisseur de la feuille après 50 plis est :

E50 = 1125899906842624
106 km = 1125899906.842624 km.

Comparaison avec la distance Terre-Lune
La distance moyenne entre la Terre et la Lune est d’environ 384400 km. Comparons

cette distance à l’épaisseur de la feuille après 50 plis :

E50 = 1125899906.842624 km et 384400 km.

Nous constatons que l’épaisseur de la feuille, après seulement 50 plis, est largement
supérieure à la distance entre la Terre et la Lune. Cet exemple montre l’énorme crois-
sance d’une suite géométrique, où chaque terme est obtenu en multipliant le terme
précédent par 2.

2.4.3 Suites récurrentes

(cn)n, la suite récurrente définie par :c0 = 2,

cn+1 = 3cn + 1 pour n ≥ 0.

Cette suite est une suite linéaire récurrente.

Exemple 6:

2.5 Nature d’une suite
On s’intéresse dans cette section au comportement d’une suite pour les très grandes valeurs

de l’entier n (lorsque n tend vers l’infini). On parlera ainsi de la limite d’une suite (un) et on
notera :

lim
n→+∞

un.

2.5.1 Limite finie

Une suite (un)n∈N converge (ou est convergente) vers un réel L ∈ R lorsque n → +∞,
ce que l’on note (un)n −−−−→

n→+∞
L, si et seulement si :

∀ε > 0, ∃Nε ∈ N tel que ∀n ≥ Nε, |un − L| < ε.

Définition 2.5.1: Convergence d’une suite réelle
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CHAPITRE 2. SUITES NUMÉRIQUES 7

C’est-à-dire qu’à partir d’un certain rang Nε (qui dépend de ε), les termes de la suite
s’approchent de L.
On écrit alors :

lim
n→+∞

un = L où L ∈ R.

Montrons que la suite (un) = 1
n

converge vers 0.
Soit ε > 0. D’après le Propriété d’Archimède (Soit x ∈ R et y ∈ R∗

+, ∃n ∈ N tel que
x < ny. ), pour x = 1 et y = ε > 0 il existe Nε ∈ N∗ tel que

1 < Nεε,

donc
1

Nε

< ε.

Alors, pour tout n ≥ Nε,
|un − 0| = 1

n
≤ 1

Nε

< ε.

Donc, par définition, (un) converge vers 0.

Exemple 7:

|un − L| < ε ⇐⇒ −ε < un − L < ε ⇐⇒ L − ε < un < L + ε ⇐⇒ un ∈]L − ε, L + ε[.

Ainsi, si la suite (un)n converge vers L, on dit qu’à partir d’un certain rang Nε, un

appartient à un voisinage de L.
Un voisinage de L est un intervalle ouvert de la forme :

]L − ε, L + ε[.

Cette définition de la convergence est formellement adéquate, mais elle n’est pas d’uti-
lisation simple.

Remarque 5:
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CHAPITRE 2. SUITES NUMÉRIQUES 8
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Figure 2.1 – Convergence de un vers L avec ε-voisinage

Une suite (un)n diverge (ou est divergente), on note (un)n D.V, si et seulement si la
suite (un)n n’est pas convergente

Définition 2.5.2:

La limite d’une suite (si elle existe) est unique.
Propriété 2.5.1: Unicité de la limte

Démonstration. La preuve se fait par l’absurde. On suppose que L1 ̸= L2 et que L1 = lim
n→+∞

un

et L2 = lim
n→+∞

un alors

∀ϵ > 0, ∃N1 et ∃N2 : ∀n ≥ N = max(N1, N2) on a : |un − L1| < ϵ et |un − L2| < ϵ

D’où ∀ϵ > 0, ∃N : ∀n ≥ N on a :

|L1 − L2| = |L1 − un + un − L2| ≤ |un − L1| + |un − L2| < 2ϵ

et donc |L1 − L2| = 0 c’est-à-dire L1 = L2 ce qui est absurde. ■

Théorème 2.5.1: Théorème d’encadrement
Soient (un)n∈N, (vn)n∈N et (wn)n∈N trois suites réelles telles que :

un ≤ wn ≤ vn, ∀n ≥ m, où m ∈ N.

Si
lim

n→+∞
un = L et lim

n→+∞
vn = L,

alors
lim

n→+∞
wn = L.
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CHAPITRE 2. SUITES NUMÉRIQUES 9

Démonstration. Soit ε > 0. Comme lim
n→+∞

un = L, il existe N1 ∈ N tel que :

∀n ≥ N1, |un − L| < ε.

De même, comme lim
n→+∞

vn = L, il existe N2 ∈ N tel que :

∀n ≥ N2, |vn − L| < ε.

Posons N = max(N1, N2, m).
Alors, pour tout n ≥ N , on a :

L − ε < un < L + ε, et L − ε < vn < L + ε.

Or, pour ces mêmes n, on sait que un ≤ wn ≤ vn. On en déduit :

L − ε < wn < L + ε,

soit encore :
|wn − L| < ε.

Ainsi, par définition de la limite :
lim

n→+∞
wn = L.

■

Considérons la suite
wn = sin(n2)

n + 1 .

Comme pour tout x ∈ R on a −1 ⩽ sin x ⩽ 1, il suit que pour tout n ∈ N

−1
n + 1 ≤ sin(n2)

n + 1 ≤ 1
n + 1 .

Posons un = −1
n + 1 et vn = 1

n + 1. On a un ≤ wn ≤ vn pour tout n, et

lim
n→∞

un = 0, lim
n→∞

vn = 0.

Par le théorème d’encadrement, lim
n→∞

wn = 0.

Exemple 8:

Théorème 2.5.2:
Soit une suite (un)n, où n ∈ N,

1) Si la suite (un)n converge, alors elle est bornée (on dit que toute suite convergente
est bornée),

2) Si la suite (un)n est non bornée alors elle est divergente.
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CHAPITRE 2. SUITES NUMÉRIQUES 10

Démonstration. 1) Si la suite (un)n converge vers L, on a

lim un = L ⇔ ∀ε > 0, ∃Nε tel que n > Nε, |un − L| < ε

On a :

un = un − L + L

Alors
∀ε > 0, ∃Nε tel que n > Nε, |un| ≤ |un − L| + |L| ≤ ε + |L|

donc
∀n > Nε, |un| ≤ ε + |L|

Soit M = sup(|u1|, |u2|, . . . , |uNε|, ε + |L|)
On a : ∀n ∈ N, |un| ≤ M c’est-à-dire la suite (un)n est bornée.

2) C’est la contraposée de 1) ■

La réciproque du Théorème 2.5.1 est fausse. En effet, soit la suite (un)n de terme général
définie par un = (−1)n.

On a : ∀n, |un| ≤ 1 (car ∀n, −1 ≤ (−1)n ≤ 1) mais la suite (un)n est divergente.

Remarque 6:

2.5.2 Limite infinie

Une suite réelle (un)n∈N diverge vers +∞ (ou tend vers +∞) si et seulement si :

∀A > 0, ∃NA ∈ N tel que ∀n ≥ NA, un ≥ A.

On note alors :

(un)n −−−−→
n→+∞

+∞ ou encore lim
n→+∞

un = +∞.

Autrement dit, les termes de la suite deviennent aussi grands que l’on veut à partir d’un
certain rang NA : à partir de ce rang, tous les termes un dépassent la borne A.

De méme pour −∞ :

lim
n→+∞

un = −∞ ⇐⇒ ∀A > 0, ∃NA ∈ N∗ : ∀n > NA, un < −A

Définition 2.5.3: Divergence d’une suite réelle

2.6 Suites de Cauchy
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CHAPITRE 2. SUITES NUMÉRIQUES 11

Une suite (un)n∈N est dite suite de Cauchy dans R si et seulement si :

∀ε > 0, ∃Nε ∈ N∗ tel que ∀p ≥ Nε, ∀q ≥ Nε, |up − uq| < ε.

Définition 2.6.1: Suite de Cauchy

Autrement dit, à partir d’un certain rang Nε, tous les termes de la suite sont “regroupés”
dans un intervalle de taille inférieure à ε.

Théorème 2.6.1:
Toute suite convergente dans R est une suite de Cauchy.

Démonstration. Soit (un) une suite convergente dans R, et soit

lim
n→+∞

un = c.

Alors, par définition de la convergence :

∀ε > 0, ∃Nε > 0 tel que ∀n ≥ Nε, |un − c| <
ε

2 .

Soient maintenant p, q ≥ Nε. On a :

|up − uq| = |up − c + c − uq| ≤ |up − c| + |uq − c| <
ε

2 + ε

2 = ε.

Ainsi, (un)n∈N est une suite de Cauchy. ■

Théorème 2.6.2:
Toute suite de Cauchy dans R est convergente dans R.

Considérons la suite réelle (un)n∈N définie par

un = 1
n

.

Montrons que (un) est une suite de Cauchy.
Soient p, q ∈ N∗ avec p > q. Alors

|up − uq| =
∣∣∣∣∣1p − 1

q

∣∣∣∣∣ = |p − q|
pq

≤ 1
q

.

Or, pour tout ε > 0, si l’on choisit Nε > E(1
ε
), on a pour tout p, q ≥ Nε :

|up − uq| ≤ 1
q

≤ 1
Nε

< ε.

Ainsi, la condition

∀ε > 0, ∃Nε ∈ N∗ tel que ∀p, q ≥ Nε, |up − uq| < ε

Exemple 9:
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CHAPITRE 2. SUITES NUMÉRIQUES 12

est satisfaite. Donc (un) est une suite de Cauchy.
De plus, on sait que (un) converge vers 0, ce qui confirme la complétude de R :

toute suite de Cauchy y est convergente.

2.6.1 Sous-suite

Soit (un)n∈N une suite réelle. On appelle sous-suite (ou suite extraite) de (un) toute
suite de la forme

(unk
)k∈N,

où la suite (nk)k∈N est définie par une application strictement croissante

φ : N −→ N, k 7−→ nk = φ(k).

Autrement dit, on a
n0 < n1 < n2 < · · ·

Définition 2.6.2: Sous-suite ou suite extraite

Soit la suite réelle (un)n∈N définie par

un = (−1)n.

1. Sous-suite valide : Considérons l’application strictement croissante

φ : N −→ N, φ(k) = 2k.

La suite extraite correspondante est

unk
= u2k = (−1)2k = 1.

Ainsi, (u2k)k∈N = (1, 1, 1, . . . ) est une sous-suite constante de (un).
2. Cas qui n’est pas une sous-suite : Si l’on considère une suite d’indices définie
par

nk = πk,

alors (nk) n’est pas à valeurs entières. Or, pour qu’une suite (unk
) soit une sous-suite

de (un), il faut que nk ∈ N pour tout k. Ainsi, la suite (uπk) n’a aucun sens dans R,
car les indices πk ne sont pas des entiers naturels.
Autrement dit, pour définir une sous-suite, les indices doivent être choisis parmi les
entiers naturels, dans un ordre strictement croissant.

Exemple 10:
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