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Introduction

Le chémostat est crucial en biotechnologie pour la culture continue de
micro-organismes. Il permet de maintenir un environnement stable, essentiel pour
la recherche et I'industrie.

Cette étude vise a modéliser le chémostat de maniere déterministe et stochastique
pour mieux comprendre et optimiser ses dynamiques, en améliorant les
rendements et la robustesse des systemes biologiques.
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Modele du
Chémostat
Déterministe

Notations des variables

Symbole Description Unité
s(t) Concentration du substrat (nutriment) a l'instant t g/L ou mol/L
x(t) Concentration de la biomasse (microorganismes) a I'instant t g/L
Fin Flux volumique d’entrée du réacteur L/h
Fout Flux volumique de sortie du réacteur L/h
Sin Concentration en substrat dans le flux entrant g/L
Xin Concentration en biomasse dans le flux entrant g/L
u(s) Taux de croissance spécifique en fonction du substrat s h—1
V(t) Volume du mélange (de s(t) et x(t)) dans le réacteur L

D=Fn Taux de dilution h—t
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Existence et unicité de la solution positive
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d-;(tt) = D (Sin — s(t)) — pu(s(t))x(t),
Cb(f) = (u(s(t)) = D)x(1), (1)
5(0) = 5. x(0) = x.

Théoreme

Le systéme (1) admet une solution unique définie sur l'intervalle / = [0, 4+o00[. De
plus, si les conditions initiales sont positives, c'est-a-dire s(0) = sp et x(0) = xo
avec sy et xp positives, Alors, la solution (s(t), x(t)) reste positive pour tout

t > 0. Aussi s et x borné.
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Les équilibres du systeme

Dans la premiere partie, on suppose que le taux de croissance de la biomasse p est

strictement croissant. Plusieurs fonctions rencontrées dans la littérature satisfont
cette hypothése. La plus populaire est la fonction de Monod, donnée par :

_ MmaxS

T K+s

Si fimax < D, on note A(D) I'unique solution de I'équation p(A(D)) = D.

p(s)

Proposition

® Ey = (Sin,0) est un équilibre de lessivage, qui existe toujours.

® E; = (Sin — A(D), A(D)) est un équilibre avec une biomasse positive, qui

existe seulement si A(D) < Sjp.

| \ Eo E
A(D) > Si, | localement stable N'existe pas
A(D) < Sin Instable localement stable
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Les équilibres du systeme
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[aatebi Dans cette seconde partie, on considére une fonction de croissance y non

strictement croissante, typiquement modélisée par la fonction de Haldane, qui
croit jusqu'a un maximum s, puis décroit. Elle s'écrit :

Propriétés

HmaxS
ma:le;mauquesdu ,LL(S) = ﬁ
GETE K+s+ z

Lorsque 0 < D < fimax, I'équation p(s) = D admet en général deux solutions
positives A(D) et 0(D), telles que :
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mathématiques du
modéle

Les équilibres du systeme

® Ey = (Sin,0) est un équilibre de lessivage, qui existe toujours.

® E; = (Sin — A(D), A(D)) est un équilibre avec une biomasse positive, qui

existe seulement si A(D) < Sjp.

°* E; =(Sn—0(D),0(D)) est un équilibre avec une biomasse positive, qui

existe seulement si 0(D) < Sj,.

|

[ AD)>S, | MD)<Sn<0(D)]

G(D) < Sin

|

Eo | Localement stable Instable Localement stable
E; N’existe pas Localement stable | Localement stable
E, N’existe pas N’existe pas Instable

Les équilibres et leur nature dans le cas ol pu est de type Haldane.
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Extinction de la biomasse

Si max < D alors x(t) tend vers zéro exponentiellement. En d’autres termes, la

biomasse disparait.
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Le diagramme opératoires du systeme ou u fonction de "Haldane” .
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Présence de biomasse dans lI'alimentation
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s dz_(tt) — D(Sim— 5(8)) — u(s(£))x(t),
) — DX — x(1) + S(DA(2), 2

s(0) = spet x(0) = xo.

Proposition

Diagrammes opératoires
et Présence de biomasse

Le systeme (2) admet une solution unique définie sur I'intervalle / = [0, +o0[. De
plus, si les conditions initiales sont positives, c'est-a-dire s(0) = sp et x(0) = xo
avec sg et xg positives, alors les solutions restent positives pour tout t > 0.

Proposition

Le point E = (s*, x*) est un équilibre localement stable pour le systéme (2). c'est

I"équilibre avec la biomasse positive.
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Premiere présentation du modele stochastique
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dsy = (D (Sin — st) — p(se)xe) dt + o15:dBi(t)
dx; = ((1(se) — D)x¢) dt + o2x:dBs(t)
S0 = S0

X0 = X0

oll sy et xg sont des constantes positives.
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Existence et unicité de la solution positive
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Théoreme :

Pour tout (sp, xg) € R2, il existe une unique solution (s, x¢) de systéme (3)
définie pour tout t > 0 presque slirement, et la solution reste dans Ri
(i.e. (st,xt) ERIVE>0 P—p.s.)

Premiére const truction
du Modzle Stochastique
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Extinction de la biomasse :
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i Soit D= D + 303.

Théoreme

Si: D> [Wzresse

Alors pour toute valeur initiale donnée (sp, xp) € Ri, la solution (s¢,x:) du
systeéme (3) satisfait

1
limsup = log(x:) < 0 p.s.,

) t—oo L

Premiére construction
du Modzle Stochastique

ce qui signifie que x; tend a zéro exponentiellement presque siirement. En d'autres
termes, les micro-organismes disparaissent avec une probabilité égale a un.
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d Wodsle Stoc htqve

Distribution stationnaire

Définissons une fonction continue G : Ry — R par :
G(s) = —(D—a1DK)(s—Sin)?+01(D— m+2DS;,)(s— Sin) — 01(mSin — D(a+ Sin+ KS2))

Théoréme

N
’

Si o1 et oy satisfont :
-2C

D 4
S;nA’ (4)

o1 < Go, U%<

~ mS,-,,

2
z < 2D, 5
atSp+KS2 72 ®)

N G(s) _ D 4D[mSin—D(a+Sin+KS2)]
ot €= sup 755 <0, Go= g A (D—m+2KDS;)2+4KD[mSy—D(a+Sm+KS2)]’
s€(0,00) in
alors pour toute valeur initiale (sg, xp) € R%r, il existe une distribution stationnaire

u(-) pour le systeme (3)
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Simulation déterministe et stochastique du premier modele

Simulation de la concentration de substrat s(t) et S (schéma d Euler-Maruyama)
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Simulation déterministe et stochastique du premier modele
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Figure — Solutions numériques pour le systéme (3) et le systéme déterministe

correspondant (1) avec les parameétres principal D =1 et 07 = 0 = 0.1.
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Simulation déterministe et stochastique du premier modele
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Figure — Solutions numériques pour le systéme (3) et le systéme déterministe

correspondant (1) avec les paramétres principal D = 1.5, o3 = 0.08, et o, = 0.08.
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Simulation déterministe et stochastique du premier modele

Simulation de la concentration de substrat s(t) et S, (schéma d Euler-Maruyama)
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Figure — Solutions numériques pour le systéme (3) et le systéme déterministe

correspondant (1) avec les parameétres principal D =1, 01 = 0.2, et 0, = 1.1.
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Deuxigme construc tion
du Modgle Stox h stique

Deuxieme présentation du modele stochastique

En particulier, nous modélisons la dilution D comme une quantité fluctuante
autour d'une valeur moyenne Dy avec une composante stochastique :

D = Dy + o&

ou £dt = dB(t) et o est un paramétre qui mesure |'intensité du bruit.

dst = (Do (Sin — st) — p(st)xt) dt + o (Sin — st) dB(t)
dx; = (p(st) — Do)xedt — oxdB(t)

S0 = %0

X0 = Xo

Théoreme : Existence et unicité de la solution

Pour tout (s, x0) € R2, il existe une unique solution (s, x) de systéme (6)
définie pour tout t > 0 presque siirement.
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Simulation déterministe et stochastique du deuxiéme
modeéle

IMAME’'2025 Sim:llalion de la concentration de substrat s(t) et s, {schéma d Euler-Maruyama) Simulation de la concentration de substrat s(t) et s, (schéma d Euler-Maruyama)
5 r T T r T T T v T
Déterministe
. 1 Déterministe
Mohamed Najib 3 Stochastique Stochastique
Laatabi ~2 1 A
@, ] & or
0
o 20 40 60 80 100 120 140 160 180 200 -50 2 4 6 8 10 12 14 16 18 20
t t
Simul: de la ation de bi x(t) et X, (schéma d Euler-Maruyama) dela ion de bi x(t) et x, (schéma d Euler-Maruyama)
20F r T v T T T T T T = 8
Déterministe Déterministe
15 tochastique | | Stochastique
4 ]
4
2 Wy ]
: Mkt M
ol AT A pai —
0 20 40 80 80 100 120 140 160 180 200 ] 2 4 6 8 10 12 14 16 18 20

t

o =0.5. o=1.5.

Simulation déterministe

ol Stochasiaue Solutions numériques pour le systéme (6) et le systeme déterministe correspondant (1)
avec les parametres principal D = Dy = 0.002, sp = 3.02 et xp = 1.
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Simulation déterministe et stochastique du deuxiéme
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Simulation déterministe
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Simulation déterministe et stochastique du deuxiéme

modeéle

Solutions numériques pour le systéme (6) et le systéme déterministe correspondant (1)
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